Minebea

MINEBEA CO., LTD.

INSTRUCTION MANUAL

DIGITAL INDICATOR CSD-891B

Note: Please read this Instruction Manual carefully before use.
Be sure to follow the items that require attention described in the manual. Keep the manual at hand so that you can pick it up and read it as soon as necessity requires.

Forwards

Thank you very much for your purchasing Minebea's Digital Indicator CSD-891B. This manual explains installation procedures and connecting method and also operating method for the Digital Indicator CSD-891B. Make use of it properly after reading through the manual carefully.

Be sure to deliver the manual to the end user. Moreover, the end user should keep the manual at hand after reading it over.

This manual is intended for the technical experts to read.

The contents of the manual may subject to change for improvement without notice.

Marks and arrangements used in this manual

The following marks are attached to the explanation on the matters that indicate "Don't do this.", "Take care." and "For reference".

Be sure to read these items where these marks are attached.
\} 【Warning Warning may cause injury or accident that may harm to the operator. Don't do these things described here.

- Caution during operation and working.

Be sure to read the item to prevent malfunction.

Mark during operation.

- Press the switch.

For safe operation

Be sure to read this instruction manual before use.

1. Installation place
Use the instrument where the temperature/humidity specifies with
the range as follows:
$\begin{array}{ll}\text { Environmental temperature } & :-10{ }^{\circ} \mathrm{C} \text { to } 50{ }^{\circ} \mathrm{C} \\ \text { Environmental humidity } & \text { : Less than } 85 \% \text { R.H. (Non condensing) }\end{array}$
(1) Location where installation is not allowed.

』. Warning Don't locate the instrument on the places as follows :
It may cause an unexpected faulty in the instrument.

- Do not locate the instrument in direct and/or high temperature area.
- Do not use the instrument in a high humid area.
- Do not install the instrument where there are vibrations and shocks.
- Do not use the instrument where there is excess of dusts and fine particles.
- Do not use the instrument where there are corrosive gas and salt and like that.
- Do not install the instrument where there is rapid change of temperature and humidity.
- Do not install the instrument near the devices that are magnetized or generate an electromagnetic field.
- Do not install the instrument where the instrument may be affected by radioactivity or radial rays.
- Avoid the location where chemical reaction may take place such as in a laboratory, or like that.
(2) Installation
- When installing the instrument, install as referring to the following figures and secure the space around the instrument.

Each dimensions of the instrument and required dimensions for the environmental spaces are as follows:

Outline dimensions

Front

Side

Unit : mm

- Before supplying the power, check that the indication of power supply voltage/specifications for the instrument and the power going to supply should be the same.
If they are not equal, contact with Minebea.
If you use the instrument without checking them, it may cause a damage in the instrument or electric shock to the operator.

- Earth wire should be grounded securely.

When earth wire is not connected, it may cause a malfunction of the instrument or electric shock to the operator.

3. Application note

Warning Before using a new instrument or exchanging the strain gage applied transducer for a new one, be sure to make calibration. If calibration will not be made, the correct measuring results may not be obtained nor which may cause malfunction in the instrument and there may exist damage in peripheral equipments. Besides, even though calibration has been made, there may occur the similar case when the results are not correct, so make calibration, again.

- In case of using the instrument, check that the connections are executed properly. If not connected properly, the correct measuring result will not be obtained, nor it may cause malfunctions of the instrument, damage to the peripheral equipments or even more serious accidents.
> \. Warning - When change of setting is made carelessly on the instrument during measurement, correct measured results may not be obtained and it may cause malfunction in the instrument and even have the possibility of damage in peripheral instruments.
- Do not shock the instrument such as throwing something on it.

If neglected, it may cause destruction of the parts and damage to the electrical circuits.

毋. Warning	Do not push the panel sheet on the instrument with the excessive
	strong force nor push it with sharp edge object such as a driver.
	If neglected, it may cause a damage to the panel switch and even have the possibility of damage to resist to environments or operational performances.

A. Warning | Don't remove the cover of the case of the instrument, nor peel off the |
| :--- |
| panel sheet nor take the instrument into pieces. |
| If neglected, it may cause a damage to the case and the panel sheet |
| and even have the possibility of damage to resist to environments or |
| operational performances. |

- At the time of shipment from the factory, the instrument has been plated with a clear sheet on the panel sheet for protective purpose. In case of application, use the instrument after removing the clearsheet first.

History of revision

Date	Instruction Manual No.	Details of revised point
Oct. 2001	DRW.NO.EN294-1143	First Version ROM Ver. 1.000 or later
Jun. 2002	DRW.NO.EN294-1143-A	Due to ECN No.FN02-02066 - Change - Wiring instruction seal affixation is changed right, and the outline drawing is also changed. - Additional - 8-2., 13-3. Add F-87
Sept. 2004	DRW.NO.EN294-1143-B	Due to ECN No.FN04-02111 - Change - $7-14$. "The backup time is over ten years." has changed to "The backup time is about ten years."
Apr. 2005	DRW.NO.EN294-1143-C	Due to ECN No.FN05-02035 - Addition - At the warning column in the wiring section, the clause of " As there is a case which standard wiring color is different, please confirm the inspection data sheet of the load cell being used." is added.
Aug. 2005	DRW.NO.EN294-1143-D	Due to ECN No.FN05-02085 - Correction - 11-8. General specifications Outline dimensions from " $208 \mathrm{~mm} \times 67 \mathrm{~mm} \times 143 \mathrm{~mm}$ " to " $208 \mathrm{~mm} \times 67 \mathrm{~mm} \times 140.7 \mathrm{~mm}$ "
Jan. 2010	DRW.NO.EN294-1143-E	Due to ECN No.FN10-02013 ROM Ver. 1.800 or later - Addition - 8-2., 13-3. Add F-84
Feb. 2010	DNO.EN294-1143-F	Due to ECN No.FN10-02013A - Addition - $8-2$. $\mathrm{F}-84$ "Restriction and warning" is added.
May. 2010	DRW.NO.EN294-1143-G	Due to ECN No.FN10-02058B - Addition - 7-3-1. Analog filter $7-7$. Detection of stability $7-7-1$. Range to detect stability 7-7-2. Time to detect stability Due to ECN No.FN10-02026B - Change - Front cover logo is changed.
Oct. 2010	DRW.NO.EN294-1143H	Due to ECN No.FN10-02140 - Change - MInebea logo is changed.
Jan. 2011	DRW.NO.EN294-1143-I	```Due to ECN NO.FN11-02018 - Correction - 9-3-4."DE-9S-N(JAE)" to "DE-9S-NR by JAE or equivalent."```

INDEX

Forwards I
Marks and arrangements used in this manual II
For safe operation III

1. Installation place III
2. Power supply V
3. Application note V
History of revision VII
4. General 1
1-1. Features 1
5. Name and function of each point 2
2-1. Front panel 2
6. Installation procedures 4
$3-1$. Installation place 4
$3-2$. Location where installation is not allowed. 4
$3-3$. Installation 5
7. Connecting method 6
$4-1$. Layout of the terminal boards 6
$4-2$. Note on connection 7
4-3. Connection 8
4-3-1. Connection with strain gage applied transducers 8
4-3-2. Connection with external control inputs 18
4-3-3. Connection with open collector output 19
$4-3-4$. Connection with the power supply and the earth 20
8. Calibration procedures 21
5-1. Preparations 21
5-2. Calibration procedures 21
$5-2-1$. Calibration method to register the output of strain gage applied transducer at the time of maximum display after setting the load to zero. 22
$5-2-2$. Calibration procedures to register the output of strain gage applied transducer at the time of zero and the maximum display 28
$5-2-3$. Calibration method to register by reading output value of strain gage applied transducer in the conditions of zero/actual load application individually 34
$5-2-4$. Zero fine adjustment 41
$5-2-5$. Span fine adjustment 44
$5-2-6$. Calibration procedure to apply registration again for zero point only 47
$5-3$. Calibration method by communication 51
5-3-1. Calibration method by communication to register the output of strain gage applied transducer at the time of maximum display after setting the load to zero. 52
$5-3-2$. Calibration procedures by communication to register the output of strain gage applied transducer at the time of zero and the maximum display 57
$5-3-3$. Calibration method by communication to register by reading output value of strain gage applied transducer in the conditions of zero/actual load application individu 62
$5-3-4$. Zero fine adjustment by communication 68
$5-3-5$. Span fine adjustment by the communication 71
$5-3-6$. Calibration procedure by the commnunicaitonto apply registration again for zero point only 74
$5-4$. Selection of calibration methods on each condition 77
$5-4-1$. In case of executing the calibration on the instrument newly 77
$5-4-2$. When the calibration is executed again 81
$5-5$. Setting the prohibition against calibration 81
9. Operation procedure 82
6-1. Eunc. key 82
6-1-1. Operations in Measurement mode 82
$6-1-2$. When operating in the other mode 82
$6-2$. $\frac{S_{*}}{4}$ key 82
$6-2-1$. When operating in the measurement mode 82
$6-2-2$. Operation is made in the other mode 83
$6-3$. $\frac{\text { ZERO }}{\triangle}$ key 83
$6-3-1$. Operation is made in the measurement mode 83
$6-3-2$. Operation in the other mode 83
6-4. A/Z key 84
$6-4-1$. Operation in the measurement mode 84
$6-4-2$. Operation in the other mode 84

$6-5$. | A / Z |
| :---: |
| $O F F$ |
| key | 84

$6-5-1$. Operation in the measurement mode 84
6-6. SNHITER key 84
7. Function and operation 85
7-1. External control input signal and Open collector output signal 85
$7-1-1$. External control input signal 85
$7-1-2$. Open collector output signal 86
7-1-3. Equivalent circuit 87
7-2. Comparator 87
$7-2-1$. ON/OFF for the Comparator S0, S1, S2, S3 and S4. 87
$7-2-2$. Change of set value 88
$7-2-3$. Operation on comparator S1, S2, S3 and S4 90
7-2-4. Comparative target for comparator S1, S2, S3 and S4 91
$7-2-5$. Operation of comparator S0 92
7-2-6. Hysteresis on comparator 95
$7-3$. How to use the filter 97
7-3-1. Analog filter 97
7-3-2. Digital filter 97
$7-4$. Selection of A / D sampling rate 98
$7-5$. Zero tracking 98
$7-5-1$. What is zero tracking? 98
$7-5-2$. Setting related with zero tracking 99
$7-5-3$. Cancellation for compensation by zero tracking 100
7-6. Stabilized filter 100
$7-6-1$. What is the Stabilized filter? 100
$7-6-2$. Setting related with the Stabilized filter. 101
$7-7$. Detection of stability 102
$7-7-1$. Range to detect stability 102
$7-7-2$. Time to detect stability 102
$7-8$. Various kinds of functions related with the display 103
$7-8-1$. Selection of display rate 103
$7-8-2$. Selection of decimal point display position 103
$7-8-3$. Load display range 103
7-9. Selection the target for HOLD 103
$7-10$. Change of bridge power supply voltage 103
$7-11$. Tare weight cancellation (A/Z) 104
7-12. Zero set 104
7-13. Key lock function 104
7-14. CHECK value 105
$7-15$. Record place of set data etc. 105
$7-16$. Prohibition of calibration 105
$7-17$. Check mode 106
7-17-1. Operating procedure for the check mode 106
7-18. Monitor mode 114
8. Function mode 117
$8-1$. Setting method for function mode 117
8-2. Function of Function data 120
9. Options 129
9-1. Analog output 129
9-1-1. Relative function 130
$9-1-2$. Specification of current output 130
$9-1-3$. Specification of voltage output 130
$9-1-4$. Connection of the current output 131
$9-1-5$. Connection with the voltage output 132
$9-1-6$. Scaling of analog output 133
$9-1-7$. Fine adjustment 1 on analog output 134
$9-1-8$. Fine adjustment 2 on analog output 137
$9-2$. BCD output 140
$9-2-1$. Related function 140
$9-2-2$. Specifications for BCD output 140
$9-2-3$. Pin configurations for the BCD output connector 141
$9-2-4$. Equivalent circuit for input/output 142
$9-2-5$. Timing chart 143
$9-2-6$. Output condition 144
9-2-7. Selection of output logic for P.C.(Print command), and of its width 145
9-3. RS-232C interface 146
9-3-1. Related function 146
9-3-2. Specifications for interface 146
9-3-3. Procedures of data transfer 147
9-3-4. Pin configurations for connector pin 148
$9-3-5$. Data format 149
9-3-6. Communication error process 163
$9-4$. RS-422/485 interface 164
9-4-1. Related functions 164
9-4-2. Specifications on interface 165
9-4-3. Procedure of data transmission 165
9-4-4. Pin configurations for connector pin 166
9-4-5. Data format 168
9-4-6. Communication error process 182
10. Trouble shooting 183
10-1. Execute trouble shooting 184
10-2. Optional check 192
10-3. Error display 200
11. Specifications 202
11-1. Specifications for analog section 202
11-2. Specifications for digital section 202
11-3. Front panel sheet key function 203
11-4. External control function 203
11-5. Comparator function 203
11-6. Open collector output signal 204
11-7. Various kinds of functions 204
11-8. General specifications 204
11-9. Standard specifications at the shipment 205
11-10. Accessories 205
11-11. Options 205
11-11-1. Analog output 205
11-11-2. BCD output 206
11-11-3. RS-232C interface 206
11-11-4. RS-422/485 interface 207
11-12. Outline dimensions 207
12. Warranty 208
12-1. Warranty 208
12-2. Repair 208
13. Appendix 209
13-1. Replacement of fuse 209
13-2. Character's pattern for display 212
$13-3$. Setting table for functions 213

1. General

The instrument is a digital indicator for the application of strain gage applied transducer.

1-1. Features

Main features for CSD-891B are as follows :
(1) Compact size

The size of $208 \mathrm{~mm} \times 67 \mathrm{~mm} \times 143 \mathrm{~mm}$ is suitable for storage in the board.
(2) Non-linearity

Display 0.01% F.S.
(3) High speed sampling

High speed sampling as 200 times/s

2. Name and function of each point

2-1. Front panel

(1) Load display section

The load data is shown in the Measurement mode, and status or set value is shown in various kinds of Calibration mode and Setting mode.
(2) Judgement display

Compared results by comparator function can be displayed.
(3) Status display

RUN Lights up in the measurement mode.
A/Z Lights up in executing the tare weight cancellation (A/Z ON).
Lights off after clearing the tare weight cancellation (A/Z OFF).
LOCK Lights up when the input between the HOLD and COM. at the external control is shorted. During light on, any key operation is prohibited.
HOLD Lights up when the input between the HOLD and COM. at the external control is shorted.

Using for executing the tare weight cancellation($\mathrm{A} / \mathrm{Z} \mathrm{ON})$.
(5)

A/Z
OFF key
Using for clearing the tare weight cancellation(A/Z OFF).
(6)
key
Using for calling the change mode of the set value, or carry up the numeric in the various setting.
(7) key
Using for executing the zero set(one touched zero adjustment), or the numeric increment in the various setting.
(8) $\xlongequal[\substack{\text { CHECN } \\ \text { func. }}]{ }$ key

Using for shifting to the function mode.

key.
(9) EnTER key
Using for registering the set values at the time of various settings.

(10) Terminals

Connects with the external control input, the open collector output, the strain gage applied transducers, such as load cell, the analog output, the AC power supply, and ground.
(11) Optional products attaching portion

One option either of BCD-OUT, CC-LINK, RS-232C, or RS-422/485 is installed.
The cover is installed when there is no optional products.
(12) Position where unit seal is pasted

Please put the unit seal of the attachment if necessary.

3. Installation procedures

3-1. Installation place

Use the instrument where the temperature/humidity specifies within the range as follows:

Environmental temperature	$:-10{ }^{\circ} \mathrm{C}$ to $50{ }^{\circ} \mathrm{C}$
Environmental humidity	$: 85 \% \mathrm{RH}$ or less(Non condensing.)

$3-2$. Location where installation is not allowed.

- Do not expose the instrument in direct sunlight and/or high temperature area.
- Do not use the instrument in a high humid area.
- Do not install the instrument where there is high mechanical vibrations and shock.
- Do not use the instrument where there are excess of dusts and fine particles.
- Do not install the instrument where there include any corrosive gas or any salty atmosphere.
- Do not install the instrument where there is rapid change of temperature and humidity.
- Do not install the instrument near the devices that are magnetized or generate an electromagnetic field.
- Do not install the instrument where there may suffer radioactivity or radioactive rays.
- Avoid the location where chemical reaction may take place such as in a laboratory, or like that.

3-3. Installation

When installing the instrument, install as the following figures and secure the space around the instrument.

Each dimensions of the instrument and required dimensions for the environmental spaces are as follows:

Outline dimensions

Front

Side

Unit: mm

4. Connecting method

4-1. Layout of the terminal boards
There is the terminal boards, which has 27 points of terminals.
Layout of terminal boards are shown in the following figure. :

$\begin{aligned} & \text { Terminal } \\ & \text { No. } \end{aligned}$	Descriptions	Applications	$\begin{gathered} \text { Terminal } \\ \text { No. } \end{gathered}$	Descriptions	Applications
1	E(Shield)	Strain gage applied transducer	15	COM.	Common for external control input and open collector output
2	D(Amplifier input +)		16	RUN	Open collector output
3	A(Bridge power supply +)		17	ERROR	
4	B(Amplifier input -)		18	SO	
5	F(Sensing +)		19	S1	
6	A-OUT +	Analog output	20	S2	
7	G(Sensing -)	Strain gage applied transducer	21	S3	
8	A-OUT -	Analog output	22	S4	
9	C(Bridge power supply -)	Strain gage applied transducer	23	N.C.	
10	ZERO	External control output	24	SOURCE	AC power supply
11	HOLD		25	N.C.	
12	A/Z		26	SOURCE	AC power supply
13	A/Z OFF		27	θ	Ground
14	LOCK				

- The COM.(Terminal No.15) is common for the external control input (Terminal No.10~14) and the open collector output(Terminal No. 16 ~ 22).

O Don't connect with N.C. terminals(Terminal No. 23 and 25).

! ! Warning
 In case of connection with the instrument, keep strictly to the following items. If neglected, it may cause an unexpected failure or a damage to the instrument.

- Be sure to set the power supply to OFF, when the connection will be made.
- Since the terminal boards at front of the instrument is made of resin, take care not to drop it down or not to apply strong impact.
- Recommended torque to tighten the terminal screws for terminal board should be as follows.

	Torque to tighten the terminal screws
Terminals	$0.6 \mathrm{~N} \square \mathrm{~m}$

- The suitable crimp type terminal lugs for the terminal board are as follows:

	Width of crimp type terminal lugs	Suitable crimp type terminal lugs
Terminals	6.2 mm or less	$1.25-3$ or Y -type $1.25-3.5$

- Connecting cable with the instrument should be away from the noise source such as power supply line and/or I/O line for control and so on as far as possible.
- Conduit wiring should be the type of exclusive one, and avoid using with another line together.
- All of the connections should be executed securely by referring to the Instruction manual for the instrument.

4-3. Connection
4-3-1. Connection with strain gage applied transducers
The instrument can connect with strain gage applied transducers, such as load cell, pressure transducer and so on. Here, we will describe the example of connections with load cell, so the connection with another type of strain gage applied transducers shall be proceeded in the same way.
$※ 1$ When tension is applied with the application of tension type or universal(compression/tension) type of load cell, and display of " + " direction is required, connect "Green" with Terminal No. 4 and "Blue" with Terminal No. 2 individually. As there is a case which standard wiring color is different, please confirm the inspection data sheet of the load cell being used.
※2 When the length of CAB-502 is more than 30 m totally, there may have the case that the accuracy is out of warranty because the resistance of cable makes the input voltage of the instrument decreased.
※3 When the length of CAB-501 is more than 100 m totally, there may have the case that the accuracy is out of warranty because the resistance of cable makes the remote sensing function not worked fully.
(1) Connection with 1 piece of load cell and CSD-891B

$※ 1$ When tension is applied with the application of tension type or universal(compression/tension) type of load cell, and display of "+" direction is required, connect "Green" with Terminal No. 4 and "Blue" with Terminal No. 2 individually. As there is a case which standard wiring color is different, please confirm the inspection data sheet of the load cell being used.
※2 When the length of CAB-502 is more than 30 m totally, there may have the case that the accuracy is out of warranty because the resistance of cable makes the input voltage of the instrument decreased.
$※ 3$ When the length of $\mathrm{CAB}-501$ is more than 100 m totally, there may have the case that the accuracy is out of warranty because the resistance of cable makes the remote sensing function not worked fully.
(2) Connection with 1 piece of load cell and a junction box for extension use(B-304) and CSD-891B
i) When $\mathrm{CAB}-502(4$-cores cable) is used.

ii) When $\mathrm{CAB}-501$ (6-cores cable) is used

$※ 1$ When tension is applied with the application of tension type or universal(compression/tension) type of load cell, and display of "+" direction is required, connect "Green" with Terminal No. 4 and "Blue" with Terminal No. 2 individually. As there is a case which standard wiring color is different, please confirm the inspection data sheet of the load cell being used.
$※ 2$ When the length of CAB-502 is more than 30 m totally, there may have the case that the accuracy is out of warranty because the resistance of cable makes the input voltage of the instrument decreased.
※3 When the length of CAB-501 is more than 100 m totally, there may have the case that the accuracy is out of warranty because the resistance of cable makes the remote sensing function not worked fully.
(3) Connection with 2 to 4 points of load cells and Summing type junction box $(\mathrm{B}-307)$ and CSD-891B
i) When $\mathrm{CAB}-502(4-$ cores cable $)$ is used.

Internal wiring diagram of B-307

ii) When CAB-501 (6 -cores cable) is used.

Internal wiring diagram of $\mathrm{B}-307$

$※ 1$ When tension is applied with the application of tension type or universal(compression/tension) type of load cell, and display of "+" direction is required, connect "Green" with Terminal No. 4 and "Blue" with Terminal No. 2 individually. As there is a case which standard wiring color is different, please confirm the inspection data sheet of the load cell being used.
$※ 2$ When the length of CAB-502 is more than 30 m totally, there may have the case that the accuracy is out of warranty because the resistance of cable makes the input voltage of the instrument decreased.
※3 When the length of CAB-501 is more than 100 m totally, there may have the case that the accuracy is out of warranty because the resistance of cable makes the remote sensing function not worked fully.
(4) Connection with 2 to 4 points of load cells and Summing type junction box ($\mathrm{SB}-310$) and CSD-891B.
i) When $\mathrm{CAB}-502(4$ - cores cable) is used.

Internal wiring diagram of SB-310

ii) When CAB-501 (6 -cores cable) is used.

Internal wiring diagram of SB-310

4-3-2. Connection with external control inputs
Connections with external control input "ZERO", "A/Z", "A/Z OFF", "HOLD" and "LOCK" should be made according to the below figures by using a contact or an open collector between the each terminal and terminal No. 15 at "COM."
Refer to the paragraph 7-1 for the function of each input.

> \! Warning Connections with external control outputs should be made securely according to the figures. If neglected, it may cause an unexpected failure and/or malfunction to the instrument.

- For the connections with external control inputs, be sure to apply shielded cable, and the shielded cable should be connected with θ terminal(Terminal No.27)
If not connected, it may cause malfunction due to the effects from external noises and so on.

4-3-3. Connection with open collector output
Connections with open collector outputs "RUN", "ERROR", "S0", "S1", "S2", "S3" and "S4" and the external load should be made by using each terminal and terminal No. 15 at "COM.". At the same time, take care that the load should not exceed the rated load of open collector output.

The rated load of open collector $\quad \mathrm{V}_{\mathrm{CE}}=\mathrm{DC} 30 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=\mathrm{DC} 30 \mathrm{~mA}$ MAX.

(Please prepare the external power supply for load separately.)

4. Warning

Connections with the open collector outputs should be made securely according to the figures and also within the rated capacity of the open collector. If neglected, it may cause an unexpected failure and/or malfunction to the instrument.

For the protection in the open collector of this instrument, connect the surge preventive element that satisfies the characteristics of external load to connect. If neglected, it may cause unexpected failure and/or malfunction due to the effects from damage/melt down of the open collector output of this instrument.

- For the connections with contact outputs, be sure to apply shielded cable, and the shielded cable should be connected with GND terminal (Terminal No.27) of the instrument. If not connected, it may cause malfunction due to the effects from external noises and so on.
$4-3-4$. Connection with the power supply and the earth
Connections with the power supply and the earth should be made as the following figure. Grounding should be the D class with single earth.
Power supply voltage AC100 V to AC240 V
(Allowable variable range : AC85 V to AC264 V)
Frequency for power supply
Power consumption
$50 / 60 \mathrm{~Hz}$
Approx. 19 VA at maximum. (at AC100 V)

C100 V to AC240 V
(Allowable variable range

【 Warning Connections with the power supply and the earth should be made securely according to the figures and also within the rated capacity of the instrument. If neglected, it may cause an unexpected error.

- Grounding should be the D class with single earth.

If neglected, it may cause an unexpected malfunction due to the effects of noise from other equipments.

5. Calibration procedures

Warning

- Before using the new instrument or after exchanging the strain gage applied transducer with a new one, be sure to make calibration. If calibration is not made, correct measured results may not be obtained, or it may cause malfunction to the instrument and it may damage the peripheral equipment. Moreover, even if calibration has made, there may occur the similar case as above when the result is not correct. So make precise calibration again.
- The calibration for the instrument and "Display value at the time of minimum analog output" ($\mathrm{F}-21$) and "Display value at the time of maximum analog output" ($\mathrm{F}-22$) are not interlocked. In due course, make check on the setting for $\mathrm{F}-21$ and $\mathrm{F}-22$ securely. If neglected, correct outputs may not be obtained, or it may cause malfunction to the instrument and it may damage the peripheral equipment.

5-1. Preparations

According to the Chapter 4. Connecting method, connect the instrument and the strain gage applied transducer properly, then supply the power.

5-2. Calibration procedures

Load calibration procedures for the instrument are as follows:
(1) Calibration method to register the output (conversion with mV / V) of strain gage applied transducer at the time of maximum display (weighing capacity) after setting the load to zero (Initial load condition with tare weight).
(2) Calibration method (Automatic calibration for Zero and Span) to register the output of strain gage applied transducer (conversion with mV / V) at the time of zero load(Initial load application with tare) at the optional load condition, and also to register the output (conversion with mV / V) of strain gage applied transducer at the time of maximum display (weighing capacity).
(3) Calibration method (Actual load calibration) to register by the reading output of strain gage applied transducer, when setting in the condition of zero load applied (Initial load application with tare) and in the condition of actual load applied individually.
(4) Fine adjustment on Zero
(5) Fine adjustment on Span
(6) Calibration procedures to apply registration again for zero point only(Tare weight cancellation).

- The accuracy of calibration obtained from (1) and (2) is $1 / 1000$ or so. If more than the accuracy $1 / 1000$ is required, make calibration of (3) type.

In the following paragraphs, we will describe each calibration procedure by showing the examples with load cell applied.

5-2-1. Calibration method to register the output of strain gage applied transducer at the time of maximum display after setting the load to zero.

Warning	Before using a new instrument or exchanging the strain gage applied transducer for a new one, be sure to make calibration. If calibration shall not be made, correct measured results may not be obtained nor it may cause malfunction in the instrument and there may exist damage to the peripheral equipment. Besides, even though the calibration has been made, there may occur the similar case when the result is not correct, so make calibration again. During the calibration is executing, be sure to set Tare weight cancellation clear, and to make cancellation (Execution of F-98) for compensated data on zero set and set the OFF position of Zero tracking(Setting "00000" on F-08 and F-09), and also set the OFF position o Peak.

- During calibration procedures, press the $\xlongequal[{\substack{\left[\begin{array}{ll}\text { [intex } \\ \text { Func. }\end{array} \\ k\right.}}]{\text { key in case of }}$ interrupting the calibration is required. The calibration data will be kept as they are before entering the calibration and then returns to the Measurement mode.
- Every time the $\frac{S_{*}}{4}$ key is pressed with the load display of "FUNC", the display will change as the following arrow marks. Furthermore, every time the $\frac{\text { ZERO }}{\Delta}$ is pressed, the display will change as the reverse direction of the following arrow marks. However, "VCAL" and "VADJ" appears only when the optional analog output is attached.
"FUNC" \rightarrow "CCAL" \rightarrow "ACAL" \rightarrow "LCAL" \rightarrow "ZERO" \rightarrow "SPAN" \rightarrow
"TARE" \rightarrow "CHEK" \rightarrow "MONT" \rightarrow "VCAL" \rightarrow "VADJ" \rightarrow "FUNC" \rightarrow "CCAL" \rightarrow वाराम (Hereinafter, it will repeat.)

	Procedures	
4	 The load display shows "D-01" and it flashes on and off. When the calibration has completed already, the set value of minimum scale registered at that time is displayed. Set the minimum scale with the right keys. Setting value for the minimum scale are 4 (four) as follows: $1,2,5,10$	key : Set value inclement key
5	Press the $\sqrt{\text { Snlifi }}$ key. The load display will show "DISP".	

	Procedures	
6	 The load display shows "2000", and the digit of minimum display flashes on and off. When the calibration has completed already, the registered value of maximum display at that time is displayed. By the setting of minimum scale, the digit of minimum display that flashes on and off are as follows : The minimum scale $1,2,5$ 10^{0} digit The minimum scale 10 10^{1} digit Set the maximum display value with the right keys. The setting range for the maximum display value is (the minimum scale $\times 100$)~99 990 . In order to make effective use of the performance, set within the following ranges. When setting is made over the range as below, there may have a possibility of unstable display and so on. By pressing the key continuously, increment can be provided continuously.	key : Set value carry key key : Set value inclement key A/Z key : Set value initialization key
7	Press the The load display shows "S MV".	

	Procedures		
10	 The load display shows "ZERO" with lighting display on and off, then zero adjustment can be started.		
	Warning : At the same time, take care not to apply load variation due to vibration and so on. When load variation is applied, there will be possibilities that zero point is unstable, and precise reading of zero will not be obtained.		
	After completed, the load display becomes "END". However, when the initial load is not entered within the range from $-2.5 \mathrm{mV} / \mathrm{V}$ to $2.5 \mathrm{mV} / \mathrm{V}$, the error code shown in the right figure will show for about 2 seconds, then load display will show "ZERO" and return to step 9 . TE-L : Zero point - OVER TE-H : Zero point + OVER	Error code Error code	$\square F E-L$ $F E-H$
11	Press the $\xlongequal{\text { SHITITE }}$ key. After "CCAL" mode is over, the load display shows the present load.		

$5-2-2$. Calibration procedures to register the output of strain gage applied transducer at the time of zero and the maximum display
(1) Procedure by key operation

> Warning Before using a new instrument or exchanging the strain gage applied transducer for a new one, be sure to make calibration.
> If calibration shall not be made, correct measured results may not be obtained nor may cause malfunction in the instrument and there may exist damage in peripheral equipments.
> Besides, even though calibration has been made, there may occur the similar case when the result is not correct, so make calibration again.

> During the calibration is executing, be sure to set Tare weight cancellation clear, and to make cancellation (Execution of $\mathrm{F}-98$) for compensated data on zero set and set the OFF position of Zero tracking(Setting "00000" on $\mathrm{F}-08$ and $\mathrm{F}-09$).
 interrupting the calibration is required. The calibration data is kept as they are before entering the calibration and then returns to the Measurement mode.

- Every time the $\frac{5 *}{4}$ key is pressed with the load display of "FUNC", the display will change as the following arrow marks. Furthermore, every time the $\frac{\text { ZERO }}{\Delta}$ is pressed, the display will change as the reverse direction of the following arrow marks. However, "VCAL" and "VADJ" appears only when the optional analog output is attached.
"FUNC" \rightarrow "CCAL" \rightarrow "ACAL" \rightarrow "LCAL" \rightarrow "ZERO" \rightarrow "SPAN" \rightarrow "TARE" \rightarrow "CHEK" \rightarrow "MONT" \rightarrow "VCAL" \rightarrow "VADJ" \rightarrow "FUNC" \rightarrow "CCAL" \rightarrow वाराम (Hereinafter, it will repeat.)

	Procedures	
4	Press the $\stackrel{\substack{\text { SHIHFIT} \\ \text { EnTER }}}{ }$ key. The load display shows "D-01" and it flashes on and off. When the calibration has completed already, the set value of minimum scale which has registered at that time is displayed. Set the minimum scale with the right keys. Setting value for the minimum scale are 4 (four) as follows : $1,2,5,10$	\square key : Set value inclement key
5	Press the $\stackrel{\text { SHIFT }}{\text { ENTER }}$ key. The load display shows "DISP".	

	Procedures	
6	 The load display shows " 2000 " and the minimum display digit flashes on and off. When the calibration has completed already, the maximum display value which has registered at that time is displayed. By the setting of minimum scale, the digit of minimum display that flashes on and off are as follows : The minimum scale $1,2,5$ 10^{0} digit The minimum scale 10 10^{1} digit Set the maximum display value with the right keys. The setting range for the maximum display value is (the minimum scale $\times 100$) 99990 . In order to make effective use of the performance, set within the following ranges. When setting is made over the range as below, there may have a possibility of unstable display and so on. By pressing the key continuously, increment can be provided continuously.	key : Set value carry key key : Set value inclement key A/Z key : Set value initialization key
7	Press the The load display will show "Z MV".	

	Procedures	
8	 The load display shows " 0.0000 ", and the digit of 10^{0} will flash on and off. In case that calibration has completed already, the registered output value of load cell at that time is displayed. Set the output value for load cell with the initial load application with the right keys. Though the number of digits has not prepared in the "Inspection data" for load cell so many as shown in the right figure, extra digits are necessary for the compensation with the standard point at internal of the instrument. In case of actual setting, insert " 0 ", into the extra digits. As for the value for extra digit, when tare compensation and fine adjustment on load are applied, it is rewritten as a compensated value automatically. Setting range for the output of load cell is from $-2.5000 \mathrm{mV} / \mathrm{V}$ to $2.5000 \mathrm{mV} / \mathrm{V}$. By pressing the key continuously, increment can be provided continuously.	key : Set value carry key \square key : Set value inclement key key : Set value initialization key
9	 The load display shows "S MV".	

	Procedures	
10	 The load display shows " 0.3000 " and the digit at 10^{0} will flash on and off. In case that calibration has completed already, the registered output value of load cell at that time is displayed. Set the output value for load cell corresponding to the maximum display value with the initial load application with the right keys. The set value to be set here should be $0.2 \mathrm{mV} / \mathrm{V}$ or more than the set value in the step 8. Though the number of digits has not prepared in the Inspection data for load cell as many as the digits in the right figure, extra digits are necessary for the compensation for the internal standard point of the instrument. In case of actual setting, insert " 0 " into the extra digits. As for the value of extra digits, when tare compensation and fine adjustment on load are applied, it is written as a compensated value automatically. By pressing the key continuously, increment can be provided continuously.	key : Set value carry key key : Set value inclement key A/Z key : Set value initialization key
11	 The load display shows the "END".	
12	Press the \square key. After "ACAL" mode is over, the load display shows the present load.	

$5-2-3$. Calibration method to register by reading output value of strain gage applied transducer in the conditions of zero/actual load application individually.
(1) Procedures by the key operation

> Warning Before using a new instrument or exchanging the strain gage applied transducer for a new one, be sure to make calibration.
> If calibration shall not be made, correct measured results may not be obtained nor may cause malfunction in the instrument and there may exist damage in peripheral equipments.
> Besides, even though calibration has been made, there may occur the similar case when the result is not correct, so make calibration again.

> During the calibration is executing, be sure to set Tare weight cancellation clear, and to make cancellation (Execution of $\mathrm{F}-98$) for compensated data on zero set and set the OFF position of Zero tracking(Setting "00000" on F-08 and F-09).
 interrupting the calibration is required. The calibration data is kept as they are before entering the calibration and then returns to the Measurement mode.

- Every time the $\frac{S_{*}}{4}$ key is pressed with the load display of "FUNC", the display will change as the following arrow marks. Furthermore, every time the $\frac{\text { zERO }}{\Delta}$ is pressed, the display will change as the reverse direction of the following arrow marks. However, "VCAL" and "VADJ" appears only when the optional analog output is attached.
"FUNC" \rightarrow "CCAL" \rightarrow "ACAL" \rightarrow "LCAL" \rightarrow "ZERO" \rightarrow "SPAN" \rightarrow "TARE" \rightarrow "CHEK" \rightarrow "MONT" \rightarrow "VCAL" \rightarrow "VADJ" \rightarrow "FUNC" \rightarrow

	Procedures	
1	Press the $\xlongequal[\substack{\text { citem } \\ \text { func. }}]{\text { key for about one second. }}$ The load display shows "FUNC".	
2	Press the $\frac{5 *}{4}$ key three times. It makes the load display proceed as "FUNC" \rightarrow "CCAL" \rightarrow "ACAL" \rightarrow "LCAL"	
3	Press the $\sqrt{[\text { sintin] }}$ "LCAL" mode can be entered, then the load display shows "SCAL".	

	Procedures	
4	 The load display shows "D-01" and it flashes on and off. When the calibration has completed already, the set value of minimum scale registered at that time is displayed. Set the minimum scale with the right keys. Setting value for the minimum scale are 4 (four) as follows : $1,2,5,10$	key : Set value inclement key
5	Press the $\sqrt{\text { sintin }}$ key. The load display shows "DISP".	

	Procedures	
6	 The load display shows " 2000 " and the minimum display digit flashes on and off. When the calibration has completed already, the maximum display value which has registered at that time is displayed. By the setting of minimum scale, the digit of minimum display that flashes on and off will be as follows : $\begin{array}{lll}\text { The minimum scale } & 1,2,5 & 10^{0} \text { digit } \\ \text { The minimum scale } & 10 & 10^{1} \text { digit }\end{array}$ Set the maximum display value with the right keys. Setting range for the maximum display value is (the minimum scale $\times 100$)~99 990. In order to make effective use of the performance, set within the following ranges. When setting is made over the range as below, there may have a possibility of unstable display and so on. By pressing the key continuously, increment can be provided continuously.	
7	Press the \square key. The load display shows "LOAD".	

	Procedures	
8	 The load display shows " 2000 ", and the digit of 10^{0} flashes on and off. In case that calibration has completed already, the registered output value of load cell at that time is displayed. By the setting of minimum scale, the digit of minimum display that flashes on and off will be as follows : $\begin{array}{lll}\text { The minimum scale } & 1,2,5 & 10^{0} \text { digit } \\ \text { The minimum scale } & 10 & 10^{1} \text { digit }\end{array}$ Set the actual load value going to apply on the load cell with the right keys. The load value applied on the load cell should be less than the maximum display value set in the step 6 and should be the maximum load that can apply on the load cell with the range of (the minimum scale $\times 100$) 99999 as well. By pressing the key continuously, increment can be provided continuously.	key : Set value carry key key : Set value inclement key A/Z key : Set value initialization key
9	 The load display shows "ZERO". Here, set the initial load application.	

	Procedures	
10	 The "ZERO" on load display flashes on and off, and zero adjustment can be started.	
	Warning : Take care not to apply load variations due to vibrations and so on. If load variation is applied, the zero point will not stabilized, in due course there is a possibility that correct reading of zero won't be obtained.	
	When completed, the display on the load display shows "SPAN". However, when the initial load is not entered the range of $-2.5 \mathrm{mV} / \mathrm{V}$ to $2.5 \mathrm{mV} / \mathrm{V}$, the right Error code is shown for about 2 seconds, then the display on the load display section is shown as " ZERO", and then the step 9 can be entered.	Error code $F E-L$
	$\begin{array}{ll} \text { TE-L : Zero point } & \text { - OVER } \\ \text { TE-H : Zero point } & \text { OVER } \end{array}$	Error code $\square F E-H$
11	Apply the same load on the load cell as set in the step 8.	

(1) Procedures by key operation
\. Warning - When the tare weight cancellation (A/Z) and the setting of zero is
executing, and when the zero tracking is effective, the zero fine
adjustment cannot be entered(Displays ER-5). After making the tare
weight cancellation clear(A/Z OFF), the cancellation of the
compensation data(Execution of F-98) and the OFF position of the
zero tracking(Setting " 00000 " on $\mathrm{F}-08$ and $\mathrm{F}-09$), the zero fine
adjustment mode can be entered.

9	During calibration procedures, press the $\underset{\text { cieme }}{\text { finc. }}$ key in case of interrupting the calibration is required. The calibration data is kept as they are before entering the calibration and then returns to the Measurement mode. Every time the $\stackrel{S^{*}}{4}$ key is pressed with the load display of "FUNC", the display will change as the following arrow marks. Furthermore, every time the $\frac{\sqrt{2 \text { EERO }}}{4}$ is pressed, the display will change as the reverse direction of the following arrow marks. However, "VCAL" and "VADJ" appears only when the optional analog output is attached. "FUNC" \rightarrow "CCAL" \rightarrow "ACAL" \rightarrow "LCAL" \rightarrow "ZERO" \rightarrow "SPAN" \rightarrow "TARE" \rightarrow "CHEK" \rightarrow "MONT" \rightarrow "VCAL" \rightarrow "VADJ" \rightarrow "FUNC" \rightarrow "CCAL" $\rightarrow \operatorname{TDOD}$ (Hereinafter, it will repeat.)

	Procedures	
1	Press the The load display shows "FUNC".	

	Procedures	
2	Press the \square key four times. It makes the load display proceeded as "FUNC" \rightarrow "CCAL" \rightarrow "ACAL" \rightarrow "LCAL" \rightarrow "ZERO". Here, set the initial load application.	
3	Press the $\sqrt{\text { Sintive }}$ key. Zero fine adjustment mode can be entered, then the display on load display shows the present load value and lights on and off. At the same time, set the present load value to " 0 " with the right keys. By pressing the key continuously, increment can be provided continuously. The variation of load value for one push of the right key is less than 1 digit of display. Therefore, a few pushes of these keys are required to get the change of 1 digit of display value.	key : Zero fine adjustment display decreasing key $\begin{array}{r} \frac{\text { ZeRO }}{\Delta} \text { key : Zero fine adjustment } \\ \text { display increasing key } \end{array}$
4	Press the $\xlongequal{\text { Sintive }}$ key. The indication of load display shows "END".	

	Procedures	
5	 After quitting from zero fine adjustment mode, the load display shows the present load value.	

(1) Procedures by key operation

WarningWhen the tare weight cancellation (A/Z) and the setting of zero is executing, and when the zero tracking is effective, the span fine adjustment cannot be entered(Displays ER -5$)$. After making the tare weight cancellation clear(A/Z OFF), the cancellation of the compensation data(Execution of F-98) and the OFF position of the zero tracking(Setting "00000" on F-08 and F-09), the span fine adjustment mode can be entered.

- During calibration procedures, press the $\frac{\left[\begin{array}{l}\text { chenk } \\ \text { func. }\end{array}\right.}{\text { key in case of }}$ interrupting the calibration is required. The calibration data is kept as they are before entering the calibration and then returns to the Measurement mode.
- Every time the $\frac{S_{*}}{4}$ key is pressed with the load display of "FUNC", the display will change as the following arrow marks. Furthermore, every time the $\frac{\text { ZERO }}{\triangle}$ is pressed, the display will change as the reverse direction of the following arrow marks. However, "VCAL" and "VADJ" appears only when the optional analog output is attached.
"FUNC" \rightarrow "CCAL" \rightarrow "ACAL" \rightarrow "LCAL" \rightarrow "ZERO" \rightarrow "SPAN" \rightarrow "TARE" \rightarrow "CHEK" \rightarrow "MONT" \rightarrow "VCAL" \rightarrow "VADJ" \rightarrow "FUNC" \rightarrow "CCAL" \rightarrow 일 (Hereinafter, it will repeat.)

	Procedures	
1	Press the \square FUNC. key for about one second. The load display shows "FUNC".	

	Procedures	
2	Press the \square key five times. It makes the load display proceeded as "FUNC" \rightarrow "CCAL" \rightarrow "ACAL" \rightarrow "LCAL" \rightarrow "ZERO" \rightarrow "SPAN". Here, set the maximum load that can be applied within the maximum value on the load cell.	
3	 Span fine adjustment mode can be entered, then the display on load display shows the present load value and lights on and off. At the same time, adjust the present load value to be the same load applied on the load cell with the right keys. By pressing the key continuously, increment can be provided continuously. The variation of load value for one push of the right key is less than 1 digit of display. Therefore, a few pushes of these keys are required to get the change of 1 digit of display value.	key : Span fine adjustment display decreasing key key : Span fine adjustment display increasing key
4	 The indication of load display will show "END".	

	Procedures	
5	 After quitting from zero Span fine adjustment mode, the load display will show the present load value.	

5-2-6. Calibration procedure to apply registration again for zero point only
(1) Procedures by key operation

Warning During the execution of calibration, be sure to set the Tare weight cancellation clear, cancellation of the Compensated data at Zero set (Execution of $\mathrm{F}-98$), and set OFF the Zero tacking (Set the $\mathrm{F}-08$ and F-09 to " 00000 ".) and set the Peak OFF.

- During the calibration procedure, press the they key to interrupt the calibration. The calibration data will keep the same condition as it is entered before, then returns to the Measurement mode.
- When the $\frac{s *}{4}$ key is pressed with the load display of "FUNC", the display will change as the following arrow marks indicate at every time the key is pressed. However, every time the $\frac{\overline{\text { ZERO }}}{\Delta}$ is pressed, the display will change as the reverse direction of the following arrow marks.
"FUNC" \rightarrow "CCAL" \rightarrow "ACAL" \rightarrow "LCAL" \rightarrow "ZERO" \rightarrow "SPAN"
\rightarrow "TARE" \rightarrow "CHEK" \rightarrow "MONT" \rightarrow "VCAL" \rightarrow "VADJ" \rightarrow "FUNC"
\rightarrow "CCAL" \rightarrow पार्या(Hereinafter, it will repeat.)

A! Warning
Before using a new instrument or exchanging the strain gage applied
transducer for a new one, be sure to make calibration.
If calibration shall not be made, correct measured results may not be
obtained nor may cause malfunction in the instrument and there may
exist damage in peripheral equipments.
Besides, even though calibration has been made, there may occur the
similar case when the result is not correct, so make calibration again.
During the calibration is executing, be sure to set Tare weight
cancellation clear, and to make cancellation (Execution of $\mathrm{F}-98$) for
compensated data on zero set and set the OFF position of Zero
tracking(Setting "00000" on $\mathrm{F}-08$ and $\mathrm{F}-09$). If neglected, it returns
the error command (Error command No.02) to the host.
Also In case that the command not suitable for the procedure is
transmitted during the calibration, the error command(Error
command No.02) is send back to the host side.
The calibration of this instrument is not interlocked with the display
value at the minimum analog output (F-21) or at the maximum
analog output (F-22). Make sure to execute or confirm the setting by

- The calibration by the communication is possible when the optional RS-232C interface or RS-422/485 interface is mounted.

5-3-1. Calibration method by communication to register the output of strain gage applied transducer at the time of maximum display after setting the load to zero.

- Before using a new instrument or exchanging the strain gage applied transducer for a new one, be sure to make calibration.
If calibration shall not be made, correct measured results may not be obtained nor it may cause malfunction in the instrument and there may exist damage to the peripheral equipment.
Besides, even though the calibration has been made, there may occur the similar case when the result is not correct, so make calibration again.
- During the calibration is executing, be sure to make available for the calibration set (Setting "00000" on F-97). Tare weight cancellation clear, and to make cancellation (Setting of $\mathrm{F}-98$) for compensated data on zero set and set the OFF position of Zero tracking(Setting " 00000 " on $\mathrm{F}-08$ and $\mathrm{F}-09$). If neglected, it returns the error command (Error command No.01) to the host.
- The error command (Error command No.02) similarly returns to the host when the command not suitable for the procedure is transmitted during the calibration.
- Please match function No.F-50 to $\mathrm{F}-59$ as to the communication to host's specification and change (Refer to the paragraph 8, 9-3 and $9-4)$. If neglected, the communication may not be executed correctly.
- This calibration method is possible when the optional RS-232C interface or the RS-422/485 interface is mounted.
- When RS-232C interface is used, the ID No. becomes " 00 ".

During the calibration, to interrupt the calibration "Calibration mode
 The calibration data is kept as before entering the calibration and returns to the measurement mode.

Command Host \rightarrow CSD-891B

Return CSD-891B \rightarrow Host

$5-3-2$. Calibration procedures by communication to register the output of strain gage applied transducer at the time of zero and the maximum display
! ! Warning

- Before using a new instrument or exchanging the strain gage applied transducer for a new one, be sure to make calibration.
If calibration shall not be made, correct measured results may not be obtained nor it may cause malfunction in the instrument and there may exist damage to the peripheral equipment.
Besides, even though the calibration has been made, there may occur the similar case when the result is not correct, so make calibration again.

During the calibration is executing, be sure to make available for the calibration set (Setting "00000" on F-97). Tare weight cancellation clear, and to make cancellation (Setting of F-98) for compensated data on zero set and set the OFF position of Zero tracking(Setting " 00000 " on $\mathrm{F}-08$ and $\mathrm{F}-09$). If neglected, it returns the error command (Error command No.01) to the host.

- The error command (Error command No.02) similarly returns to the host when the command not suitable for the procedure is transmitted during the calibration.

Please match function No.F-50 to F-59 as to the communication to host's specification and change (Refer to the paragraph 8, 9-3 and $9-4)$. If neglected, the communication may not be executed correctly.

- This calibration method is possible when the optional RS-232C interface or the RS-422/485 interface is mounted.
- When RS-232C interface is used, the ID No. becomes " 00 ".
- During the calibration, to interrupt the calibration "Calibration mode
 The calibration data is kept as before entering the calibration and returns to the measurement mode.

Command Host \rightarrow CSD-891B

$$
\text { Return CSD-891B } \rightarrow \text { Host }
$$

	Procedures										
	Transmit the change command of zero mV / V value from the host, and set the output value from load cell in the initial load condition. The display in the load display section displays "-RS-" and "S MV" alternately.	Command Host \rightarrow CSD-891B									
								0			Ter mi
	When the inspection data sheet of load cell indicates only the digit of "X.XXXX", put " 0 " for the extra digit. When the tare weight compensation and the fine adjustment of the load is done, the numerical value of an extra digit, etc., is automatically rewritten in correction. Though the setting range of load cell is from $-2.5000 \mathrm{mV} / \mathrm{V}$ to $2.5000 \mathrm{mV} / \mathrm{V}$, the range of the actual setting value is " - 25000 to 25000 " because the decimal point is not added.	ID No. $\operatorname{Sign}(+/-)$ Output value of load cell Return CSD-891B \rightarrow Host - Normal termination									
							0	0			mi
4		ID No. $\operatorname{Sign}(+/-)$ Output value of load cell$\begin{array}{ccccccc} \cdot \text { Less than } & -2.500 & 0 \mathrm{mV} / \mathrm{V} & & \\ 2 & 6 & 8 & 10 & 12 & 14 \end{array}$									
								E			Ternion
	Don't attach the decimal point to the setting value in the command data.	$\xrightarrow[\square]{4}$									
	The setting value in the command data is put from the right, and an unnecessary space is given as space.			0	1	4	T	E			Termi

5-3-3. Calibration method by communication to register by reading output value of strain gage applied transducer in the conditions of zero/actual load application individually.

- Before using a new instrument or exchanging the strain gage applied transducer for a new one, be sure to make calibration.
If calibration shall not be made, correct measured results may not be obtained nor it may cause malfunction in the instrument and there may exist damage to the peripheral equipment.
Besides, even though the calibration has been made, there may occur the similar case when the result is not correct, so make calibration again.
- During the calibration is executing, be sure to make available for the calibration set (Setting "00000" on F-97). Tare weight cancellation clear, and to make cancellation (Setting of $\mathrm{F}-98$) for compensated data on zero set and set the OFF position of Zero tracking(Setting " 00000 " on $\mathrm{F}-08$ and $\mathrm{F}-09$). If neglected, it returns the error command (Error command No.01) to the host.

The error command (Error command No.02) similarly returns to the host when the command not suitable for the procedure is transmitted during the calibration.

Please match function No.F-50 to $\mathrm{F}-59$ as to the communication to host's specification and change (Refer to the paragraph 8, 9-3 and $9-4)$. If neglected, the communication may not be executed correctly.

- This calibration method is possible when the optional RS-232C interface or the RS-422/485 interface is mounted.
- When RS-232C interface is used, the ID No. becomes " 00 ".

During the calibration, to interrupt the calibration "Calibration mode
 The calibration data is kept as before entering the calibration and returns to the measurement mode.

Command Host \rightarrow CSD-891B

Return CSD-891B \rightarrow Host

Warning During the calibration is executing, be sure to make available for the calibration set (Setting "00000" on F-97). Tare weight cancellation clear, and to make cancellation (Setting of F-98) for compensated data on zero set and set the OFF position of Zero tracking(Setting " 00000 " on $\mathrm{F}-08$ and $\mathrm{F}-09$). If neglected, it returns the error command (Error command No.01) to the host.

- The error command (Error command No.02) similarly returns to the host when the command not suitable for the procedure is transmitted during the calibration.
- Please match function No.F-50 to F-59 as to the communication to host's specification and change (Refer to the paragraph 8, 9-3 and $9-4)$. If neglected, the communication may not be executed correctly.
- This calibration method is possible when the optional $\mathrm{RS}-232 \mathrm{C}$ interface or the $\mathrm{RS}-422 / 485$ interface is mounted.
- When RS-232C interface is used, the ID No. becomes " 00 ".
- During the calibration, to interrupt the calibration "Calibration mode

The calibration data is kept as before entering the calibration and returns to the measurement mode.

Command Host \rightarrow CSD-891B

Return CSD-891B \rightarrow Host

A. Warning
During the calibration is executing, be sure to make available for the calibration set (Setting "00000" on $\mathrm{F}-97$). Tare weight cancellation clear, and to make cancellation (Setting of $\mathrm{F}-98$) for compensated data on zero set and set the OFF position of Zero tracking(Setting " 00000 " on $\mathrm{F}-08$ and $\mathrm{F}-09$). If neglected, it returns the error command (Error command No.01) to the host.
The error command (Error command No.02) similarly returns to the
host when the command not suitable for the procedure is transmitted
during the calibration.
Please match function No.F-50 to F-59 as to the communication to
host's specification and change (Refer to the paragraph $8,9-3$ and
9-4). If neglected, the communication may not be executed correctly.

- This calibration method is possible when the optional RS-232C interface or the RS-422/485 interface is mounted.
- When RS-232C interface is used, the ID No. becomes " 00 ".
- During the calibration, to interrupt the calibration "Calibration mode interruption command" is transmitted, or press the $\begin{gathered}\text { [inece } \\ \text { Func. } \\ \text { key. }\end{gathered}$ The calibration data is kept as before entering the calibration and returns to the measurement mode.

$5-3-6$. Calibration procedure by the communication to apply registration again for zero point only

Warning	During the calibration is executing, be sure to make available for the calibration set (Setting "00000" on F-97). Tare weight cancellation clear, and to make cancellation (Setting of $\mathrm{F}-98$) for compensated data on zero set and set the OFF position of Zero tracking(Setting " 00000 " on $\mathrm{F}-08$ and $\mathrm{F}-09$). If neglected, it returns the error command (Error command No.01) to the host. The error command (Error command No.02) similarly returns to the host when the command not suitable for the procedure is transmitted during the calibration. Please match function No.F-50 to $\mathrm{F}-59$ as to the communication to host's specification and change (Refer to the paragraph 8, 9-3 and $9-4)$. If neglected, the communication may not be executed correctly.

- This calibration method is possible when the optional $\mathrm{RS}-232 \mathrm{C}$ interface or the RS-422/485 interface is mounted.
- When RS-232C interface is used, the ID No. becomes " 00 ".
- During the calibration, to interrupt the calibration "Calibration mode
 The calibration data is kept as before entering the calibration and returns to the measurement mode.

Return CSD-891B \rightarrow Host

5-4. Selection of calibration methods on each condition
The instrument prepares calibration methods shown in the paragraph in 5-2. Calibration procedures, we'll explain some conditions to execute actual calibration here.
(1) When executing calibration on the new instrument.
(In case that Combined Inspection at Minebea has not executed.)

- When load condition and output condition of load cell are clarified.
(Required accuracy is less than $1 / 1000$ or so.)
\rightarrow Proceed to the paragraph 5-4-1(1)
- When load condition and output condition of load cell are clarified.
(Required accuracy is more than $1 / 1000$ or so.)
\rightarrow Proceed to the paragraph 5-4-1(2)
- When load condition is clarified, but output condition of load cell is unclear.
\rightarrow Proceed to the paragraph 5-4-1(3)
- When exchanging with existing CSD-815 is required.
\rightarrow Proceed to the paragraph 5-4-1(4)
(2) When making calibration again.
- When calibration only for tare weight is required.
(In case that the combined Inspection at Minebea has already executed, and the calibration only for tare weight is required.)
- When fine adjustment on zero and span is required.
$5-4-1$. In case of executing the calibration on the instrument newly.
When the new instrument is purchased or reuse is desired with the new specific conditions, execute the calibration with whichever procedure as follows :
(1) When the load condition and the output condition of load cell are clarified.
(In case of desired accuracy is less than $1 / 1000$ or so.)
- The calibration accuracy obtained in this procedure is less than $1 / 1000$ or so. When precise accuracy more than $1 / 1000$ is necessary, make calibration with actual load according to the paragraph 5-4-1 (2).

Besides, the accuracy described here is a combined accuracy of the instrument and the strain gage applied transducer connected. If there may exist another factors of error such as mechanical elements and so on, it will become out of warranty, so care should be taken fully.

- The rated output value for load cell applicable by the calculation should be assumed as the value described on the "Inspection data" individually.

For example, we will show the calibration procedures as follows, that is, 3 points of load cells with $3 \mathrm{mV} / \mathrm{V}$ of rated output and 5 t of rated capacity.

Tare weight	1.5 t
Weighing capacity	5 t
Maximum display	5000

(1) Calculate the output of load cell at maximum display from the above conditions. Check that the calculated value should be within the range from $0.4 \mathrm{mV} / \mathrm{V}$ to $3.1 \mathrm{mV} / \mathrm{V}$. If the value is out of the range, calibration can't be executed.
(Output of load cell at maximum display)

$$
\begin{aligned}
& =\frac{(\text { Rated output })+(\text { Rated output })+(\text { Rated output })}{\text { Number of load cells }} \times \frac{\text { Weighing capacity }}{(\text { No. of load cells) } \times \text { (Rated load) }} \\
& =\frac{3 \mathrm{mV} / \mathrm{V}+3 \mathrm{mV} / \mathrm{V}+3 \mathrm{mV} / \mathrm{V}}{3 \text { points }} \times \frac{5 \mathrm{t}}{3 \text { points } \times 5 \mathrm{t}} \\
& =1 \mathrm{mV} / \mathrm{V}
\end{aligned}
$$

(2) After making the load cell to the initial load condition (tare weight), execute the calibration according to the paragraph $5-2-1$. In this case, input " 5000 " in the step 6 , and input " 1.0000 " in the step 8 individually. (When the calibration by communication is required, execute it according to the paragraph 5-3-1.)
(3) If necessity requires, apply zero/span fine adjustment according the paragraph $5-2-4$, and $5-2-5$. (When the calibration by communication is required, execute it according to the paragraph 5-3-4 and 5-3-5.)
(2) When the both conditions of load and the output of load cell are clarified. (In case that required accuracy is more than $1 / 1000$ or so.)

Warning The accuracy obtained through the procedures of this calibration consists from combined accuracy with the instrument and combined strain gage applied transducer, the accuracy of weight used during the calibration, error factors on mechanical and also error factors on calibration works, that is, the total accuracy of these. If high accuracy is required, full considerations should be made on each factor. If neglected, there will be a case that desired accuracy may not be obtained, so care should be taken fully.

When high accuracy is required, actual load calibration by using the weight and so on are required.
For example, we'll show the calibration procedures in the following conditions, that is, 3 points of load cell with $3 \mathrm{mV} / \mathrm{V}$ of rated output and 5 t of rated capacity.
Tare weight $\quad 1.5 \mathrm{t}$
Weighing capacity 5 t
Maximum display 5000
(1) Calculate the output of load cell at the maximum display from the above conditions. Check that the calculated value at this point is within the range from $0.4 \mathrm{mV} / \mathrm{V}$ to $3.1 \mathrm{mV} / \mathrm{V}$. If the value is out of the range, calibration cant' be executed.
(Output of load cell at maximum display)
$=\frac{(\text { Rated output })+(\text { Rated output })+(\text { Rated output })}{\text { Number of load cells }} \times \frac{\text { Weighing capacity }}{(\text { No. of load cells }) \times(\text { Rated load })}$
$=\frac{3 \mathrm{mV} / \mathrm{V}+3 \mathrm{mV} / \mathrm{V}+3 \mathrm{mV} / \mathrm{V}}{3 \text { points }} \times \frac{5 \mathrm{t}}{3 \text { points } \times 5 \mathrm{t}}$
$=1 \mathrm{mV} / \mathrm{V}$
(2) After making the load cell to the initial load condition (tare weight), execute the calibration according to the paragraph $5-2-3$. In this case, input " 5000 " in the step 6 , and input the load value applied on the load cell in the step 8 individually. (When the calibration by communication is required, execute it according to the paragraph 5-3-3.)
(3) If necessity requires, apply zero/span fine adjustment according the paragraph 5-2-4, and $5-2-5$. (When the calibration by communication is required, execute it according to the paragraph 5-3-4 and 5-3-5.)
(3) When the load condition is clarified but the output condition of load cell is not clarified.

In the case of using the existing load detecting section, and adopting the new digital indicator only, it is necessary to execute calibration after checking the output of load cell when its output is not clarified.
For example, followings are calibration procedures when weighing capacity is 5 t and the others are not clarified.
(1) Set the instrument in the monitor mode according to the paragraph 7-18. In this condition, the output level of load cell connecting with the instrument can be monitored up to approx. 3.1000 with the unit of mV / V.
(2) After making the load cell section to the initial load condition (tare weight), record the display value on load display. This value is the output of load cell at the time of initial load condition.
(3) Record the display value on load display after applying 5 t load on the load cell section. This value is the output of load cell with weighing capacity applied.
(4) From the load cell output at the time of initial load application recorded at (2), and load cell output recorded at (3) at the time of application of weighing capacity, output of load cell at the time of maximum display can be calculated according to the below formula.
Check that the calculated value is within the range from $0.4 \mathrm{mV} / \mathrm{V}$ to $3.1 \mathrm{mV} / \mathrm{V}$. The calibration can't be executed if the value is out of the range.
(Load cell output at the time of the maximum display)
$=($ Load cell output at the weighing application $)-($ Load cell output at the initial load $)$
(5) Quit the monitor mode of the instrument.
(6) After making the load cell to the initial load condition (Tare weight), execute calibration according to the paragraph $5-2-1$. In this case, the accuracy is less than $1 / 1000$ or so. At this moment, input each value, " 5000 " in the step 5 and another input is the value of "Output of load cell at the maximum display" calculated from the (4) in the step 8. If the accuracy more than of $1 / 1000$ or so is required, execute calibration according to the paragraph $5-2-3$. And at the same time, input " 5000 " in the step 6 and also input "Load value going to apply on load cell" in the step 8 individually. (When the calibration by communication is required, execute it according to the paragraph 5-3-1 and 5-3-3.)

As necessity requires, make fine adjustment on Zero and Span according to the paragraph $5-2-4$ and $5-2-5$. (When the calibration by communication is required, execute it according to the paragraph 5-3-4 and 5-3-5.)
(4) When replacing the existing CSD-891B with a new one.

Warning The accuracy in this procedure is less than $1 / 1000$ or so.
If higher accuracy is required, make calibration by using the actual load according to the paragraph 5-4-1(2).
Moreover, the accuracy described here is a combined accuracy with the instrument and strain gage applied transducer connected.
When another error factors may exist, such as constructional error factors or so, it will become out of warranty for accuracy, so care should be taken fully.

When the load at the section of load cell can't make it with initial load application due to failure on the existing CSD-891B, execute calibration by referring to the procedures as below. However, in case that the initial load condition can be obtained, make calibration according to the procedures of (1) and (2).
(1) According to the paragraph 8-1, read out and write down the function $\mathrm{F}-90$ "Increment value", the F-91 "Maximum display value", the F-93 "Zero calibration value", and the F-94 "Span calibration value" in the existing CSD-891B.
(2) According to the paragraph 4, replace the exiting CSD-891B with a normal instrument and make connections.
(3) After turning ON the normal instrument, make calibration according to the paragraph $5-2-2$. In case of this, input the "Increment value" recorded at (1) in the step 3, the "Maximum display value" in the step 5 and the "Zero calibration value" in the step 7 and in the same way, input "Span calibration value" in the step 9 . (When the calibration by communication is required, execute it according to the paragraph 5-3-2.)
$5-4-2$. When the calibration is executed again
When purchasing a new instrument and the combined inspection has executed at Minebea, however, the tare weight has changed, or fine adjustment on zero and span are required, make calibration with whichever the following methods.
(1) Calculation on tare weight only
(When combined inspection has completed at Minebea and calibration on only tare weight is required.)
When the initial load (tare weight) has changed after completing the calibration, or when the combined inspection at Minebea has been made and the calibration only for the initial load(tare weight) is required after the installation, proceed the calibration in the following steps.
(1) After setting the initial load (tare weight) on load cell section, execute calibration according to the paragraph $5-2-6$. (When the calibration by communication is required, execute it according to the paragraph 5-3-6.)
(2) In case of executing fine adjustment on zero and span

Make adjustment according to the paragraph 5-2-4(Fine adjustment on zero), and 5-2-5 (Fine adjustment on span). (When the calibration by communication is required, execute it according to the paragraph 5-3-4. (Fine adjustment on zero) and 5-3-5. (Fine adjustment on span).)

Warning The accuracy obtained through the calibration procedures consists from combined accuracy with the instrument and strain gage applied transducer, the accuracy of weight used during the calibration, error factors on mechanical and also error factors on calibration works, that is , total accuracy of these.
If high accuracy is required, full considerations should be made on each factor. If neglected, there will be a case that the desired accuracy shall not be obtained.
$5-5$. Setting the prohibition against calibration
After completing all of the calibration procedures, setting can be made to prohibit any more calibration again by setting the funciton(Related function $\mathrm{F}-97$).
For details, refer to the paragraph 7-16.

6. Operation procedure

We'll show the operating procedures with keys located on the front panel.
\square
Warning Each key operation should be made after interrupting the measurement. If it is made during measurement, it may cause an unexpected malfunction.

- Key operation in Measurement mode can be effective by pressing it for about one second or so.

6-1. . Cunce. key
6-1-1. Operations in Measurement mode
(1) When operating in single

The Function mode can be entered, and the "FUNC" is shown on the load display section. In this condition, setting on the Function or shifting to another modes can be available.
(2) When operation together with the $\frac{\substack{\text { Sinfer } \\ \text { enres }}}{\text { key }}$

After pressing the CHECK value set in $\mathrm{F}-11$ turns ON, "CHECK" in the condition display lights on, and then add the load value equivalent to the value set in $\mathrm{F}-11$ on the load display value.
Again, after pressing the $\xlongequal[\substack{\text { shntive } \\ \text { Emine }}]{\text { key for more than one second, operation with pressing this key }}$ makes to turn OFF the CHECK value and return to the former condition.
$6-1-2$. When operating in the other mode
After pressing the mode.

6-2. \square key
$6-2-1$. When operating in the measurement mode
The condition which can set the comparator set value is entered, and LED in the load display section light on and off. In this condition, the comparative value No. to be changed can be selected.
And if you keep the instrument untouched for approx. 20 seconds, the Measurement mode can be re-entered automatically.
$6-2-2$. Operation is made in the other mode
(1) Carrying-over of set value

Pressing the $\stackrel{5 *}{4}$ key in the condition of displaying the various kinds of set value, the digit of the setting value flashing on and off is going up from 10^{0} to $10^{1}, 10^{2}, 10^{3}$ and 10^{4} one by one. (However, the range of carrying-over is different according to number of digits of set value and the presence of sign.)
(2) Changeover of the function, etc.

The changeover of the various kinds of function in the function mode and the check mode can be made.
(3) Decrement in the fine adjustment

When the $\frac{s^{*}}{4}$ key is pressed at the time of making fine adjustment on ZERO, SPAN and analog output, the decrement can be made in the target value.

In the operation method of the paragraph 6-2-2(3), when the key is pressed for more than about 1 second, each operation will be executed continuously at a constant interval without ON/OFF operation of the key.
$6-3 . \xlongequal{\frac{\text { ZERO }}{\triangle}} \mathrm{key}$
$6-3-1$. Operation is made in the measurement mode
When the display value on load display section is within 10% against the maximum display value, (Refer to the Chapter 5 .), the " 0 " display will be shown compulsively due to the zero set function of this operation. As for details, refer to the paragraph 7-12.
$6-3-2$. Operation in the other mode
(1) Increment of the set value

By pressing the $\stackrel{\text { ZERO }}{\Delta}$ key with the condition of displaying various kinds of set values, the set value will increase per one count from $0,1,2,3,4,5,6,7,8,9$ and 0 again in order.
(2) Increment in the fine adjustment

When the $\xlongequal[\frac{\text { ZERO }}{\Omega}]{ }$ key is pressed at the time of making fine adjustment on ZERO, SPAN and analog output, the increment can be made in the target value.

In the operation method of the paragraph 6-3-2(2), when the key is pressed for more than about 1 second, each operation will be executed continuously at a constant interval without ON/OFF operation of the key.

6-4.
A/Z key
$6-4-1$. Operation in the measurement mode
At the same time when the Tare weight cancellation (A/Z) works and the load display value becomes the net weight display value, the " A / Z " on the status display lights up and load display becomes " 0 ".
$6-4-2$. Operation in the other mode
(1) Calibration

The setting value is initialized in the each procedures of the calibration methods.
(2) Function mode

The function number and the setting value of the function is made compulsively to " 0 " in the function mode.
(3) Setting of comparator

The set value is compulsorily made " 0 " with the set value of the comparator can set.
6-5. $\xlongequal{\stackrel{A / Z}{O F F}}$ key
$6-5-1$. Operation in the measurement mode
At the same time when the function of the tare weight cancellation clear(A/Z OFF) works, and the load display value becomes to the display value of the gross weight, "A/Z" in the condition display section lights off.

6-6. $\frac{\text { SHIFITR }}{\text { ENTE }}$ key
When $\sqrt{\text { SHIfIFP}}$ ente key is pressed, the changed set value is registered internally, and it comes off the condition which can be set.

7. Function and operation

7-1. External control input signal and Open collector output signal

The instrument is available to the external control through various kinds of input signals.
$7-1-1$. External control input signal
It operates by shortening with COM. (Terminal No.15).

Terminal No.	Name	Operation
10	ZERO	When the indicated value on load display is within 10\% against the maximum display value, zero set function activates by the operation and make the display "0" compulsively. (Same key operation in the paragraph $6-3-1$.$) As for the operational details, refer to the paragraph 7-12.$
11	HOLD	While inputting the signal, the target selected with Function $\mathrm{F}-10$ among display, contact output, analog output and options will be frozen. As for the operational details, refer to the paragraph 7-9.
12	A/Z	After the tare weight cancellation (A/Z) function works, "A/Z" in the condition display lights on with the display of the net weight in the load display section, then the load display value becomes "0". (Same key operation in the paragraph 6-4-1.) As for operation details, refer to the paragraph 7-11.
13	A/Z OFF	Only when the tare weight cancellation (A/Z) function is working, the tare weight cancellation clear(A/Z OFF) works, and "A/Z" is the condition display lights off with the display of the gross weight in the load display section. (Same key operation in the paragraph 6-5-1.) As for operation details, refer to the paragraph 7-11.
14	LOCK	During this signal input, "LOCK" in the condition display light on with the lock(prohibit) of all keys.
15	COM.	The common of the external control input signal(Terminal No.10 to 14) and the open collector output (Terminal No.16 to 22).

Operation of the input signal is executed after shortening for more than 50 ms approximately. (Level and pulse width of 2, 5,10 or 20 ms is changeable. (Related function $\mathrm{F}-72$)

During the input of HOLD signal, when ZERO, A/Z or A/Z OFF signal (or the $\frac{\text { ZERO }}{\Delta}$ key on the front panel) is input, operation of HOLD on the target selected in the function $\mathrm{F}-10$ is executed at the same time of cancellation of HOLD signal.

- After inputting the HOLD signal in power-OFF condition, turn ON the power, then the "HOLD" lights on the load display section. The load value is shown simultaneous with the cancellation of HOLD signal.

7-1-2. Open collector output signal

Terminal No.	Name	Operation
15	COM.	The common for the external control input signal (Terminal No.10 to 14) and Open collector output(Terminal No.16 to 22).
16	RUN	ON when this instrument is in the measurement mode. OFF when CHECK is OFF.
17	ERROR	ON when the various kinds of error is occurred.
18	Operated with whichever condition as follows by the setting F-33. a) ON when the load display value (The maximum display value) b) ON when the open collector output both of S1 and S2 are OFF c) ON when the open collector output both of S1 and S3 are OFF d) ON when the open collector output both of S1 and S4 are OFF e) ON when the open collector output both S2 and S3 are OFF f) ON when the open collector output both S2 and S4 are OFF g) ON when the open collector output both S3 and S4 are OFF h) Operated with whichever "open collector ON at more than the set value" or "open collector ON at less than the set value"	
i) Interlocked with HOLD LED		
j) Interlocked with A/Z LED		
k) Interlocked with LOCK LED		
l) ON when the detection of stability		

- COM.(Terminal No.15) is the common for the external control input signal (Terminal No. 10 to 14) and open collector output(Terminal No. 16 to 22).
- The comparator in the instrument executes comparative operations synchronous with the A / D sampling rate.
$7-1-3$. Equivalent circuit
(1) External control input section

(2) Open collector output section

7-2. Comparator
The instrument prepares comparators that consist of 4 kinds of set values S1, S2, S3 and S4 and comparator S 0 that can change the operation by the setting function $\mathrm{F}-33$.

- The comparator of the instrument executes comparative operation synchronous with the A / D sampling rate.

The change of the comparator set value can be available during the measurement mode.

7-2-1. ON/OFF for the Comparator S0, S1, S2, S3 and S4.
Operational selection of ON/OFF can be made for each comparator $\mathrm{S} 0, \mathrm{~S} 1, \mathrm{~S} 2, \mathrm{~S} 3$ and S 4 .
These selection can be made with the function (Related function $\mathrm{F}-30$).
As for default, all of the $\mathrm{S} 0, \mathrm{~S} 1$ and S 2 are selected ON.

\. Warning - When the set value for the comparator is set wrong, or set in the wrong procedures, it may not obtain the correct results from the comparator, and it may cause malfunctions in peripheral equipments and also cause a damage as well.

Procedures			
1	When the $\xlongequal{\frac{S_{*}}{4}}$ key is pressed in the measurement mode, it shifts to the comparative value selection mode, and the display of the load display section changes to "SO".		
2			ement key of load display section. ment key of load display section. " "S0" of load display section.

$7-2-3$. Operation on comparator $\mathrm{S} 1, \mathrm{~S} 2, \mathrm{~S} 3$ and S 4
The comparator in the instrument, $\mathrm{S} 1, \mathrm{~S} 2, \mathrm{~S} 3$ and S 4 can select the operation whichever "the open collector output ON at more than the set value", or "the open collector output ON at less than the set value". These selections can be made in the Function mode.
(Related function $\mathrm{F}-32$)
As for default, the "the open collector output ON at more than the set value" is selected for both of S1, S2, S3 and S4.

! Warning	Depending on the operational selection for comparator, ON/OFF condition for each open collector output may differ. If wrong operation is selected, ON/OFF condition for the open collector output becomes inadequate and it may cause an unexpected accident due to the malfunctions on peripheral instruments, so care should be taken fully.

When the load display is "OL" or " - OL", the "display value" for the comparison of comparator is assumed as " $+\infty$ (infinity)" and " $-\infty$ (infinity)" individually.

Operation on judgement display section and the open collector output will be shown as follows for the S 1 as a sample. The same operation is also made in S 2 , S 3 and S 4 .
(1) When the operation of "the open collector ON at more than the set value" is selected.

(2) When the operation of "the open collector ON at less than the set value" is selected.

7-2-4. Comparative target for comparator $\mathrm{S} 1, \mathrm{~S} 2, \mathrm{~S} 3$ and S 4
The comparator in the instrument, $\mathrm{S} 1, \mathrm{~S} 2, \mathrm{~S} 3$ and S 4 individually can select the comparative target from the two, that is, "Gross weight", "Net weight". This selection can be made in the Function mode. (Related function FUNC-31).
As for default, the "Gross weight" is selected for both of S1, S2, S3 and S4.

Depending on the selection of comparative target for the comparator, ON/OFF condition for each open collector output may differ. If wrong operation is selected, ON/OFF condition for open collector output becomes inadequate and it may cause an unexpected accident due to malfunctions on peripheral instruments, so care should be taken fully.

Operation on judgement display section each comparative target and the operation of the open collector output is shown as follows when the operation of "the open collector ON at more than the set value" is selected by the S1, for an example. The same operation is also made in S2, S3 and S4.
(1) When the operation of "Net weight" is selected.

(2) When the "Gross weight" is selected.

S1 judgement display, S1 contact output ON at (S1 set value) (TRACK/Gross weight)
Gross weight (small) \longleftrightarrow Gross weight (large)

The comparator S 0 in the instrument can select one among 11 operations from " 00000 " to " 00010 ". These selections can be made in the Function mode (Related function F-33) As for default, the " 0000 " has selected.

\! Warning	Depending on the selection of S0 operation, ON/OFF condition for each S 0 open collector output may differ. If wrong operation is selected, ON/OFF condition for S 0 open collector output becomes inadequate and it may cause an unexpected accident due to malfunctions on peripheral instruments, so care should be taken

As example, the operation of S 0 judgement display and S 0 open collector output at the time of whichever is selected from the " 00000 " to " 00010 " with the function $\mathrm{F}-33$, are shown in the following table.

Setting of F -33	Operation
00000	ON when (Load display value) \geqq (The maximum display value)
00001	ON when both of S1 and S2 open collector output are OFF.
00002	ON when both of S1 and S3 open collector output are OFF.
00003	ON when both of S1 and S4 open collector output are OFF.
00004	ON when both of S2 and S3 open collector output are OFF.
00005	ON when both of S2 and S4 open collector output are OFF.
00006	ON when both of S3 and S4 open collector output are OFF.
00007	Operation whichever "open collector ON at more than the set value" or "open collector ON at less than the set value".
00008	HOLD interlocked with LED
00009	A/Z \quad interlocked with LED
00010	LOCK \quad interlocked with LED
00011	On when the detection of stability (refer to 7-7)

In the next, as for the sample, the operation at S 0 judgement display and S 0 open collector output selected " 00000 " with the Function F-33 will be shown as follows. The operation for S0 comparator when the " 00002 " to " 00006 " are selected will be the same as the operation of S1, S2, S3 and S4 written in the paragraph 7-2-3, and 7-2-4.
(1) When the both of S1 and S2 select "more than" with the Function F-32.

S1 judgement display, S1 open collector output S2 judgement display, S2 open collector output S 0 judgement display, S 0 open collector output

ON at (S1 set value)§ (display value)
ON at (S2 set value) \leq (display value)
ON at $(\mathrm{S} 1$ set value) $>$ (display value) and also (S2 set value) > (display value) at the same time

(2) When the S1 selects "less than" and the S2 selects "more than" with the Function F-32.

S1 judgement display, S1 open collector output S2 judgement display, S2 open collector output S0 judgement display, S 0 open collector output

ON at (S1 set value) \geqq (display value)
ON at (S2 set value) \leqq (display value)
ON at (S1 set value) < (display value) $<$ (S2 set value)

Above figure indicates the case of (S 1 set value) $<$ (S 2 set value).
In the case of (S 1 set value) $\underline{\text { (} \mathrm{S} 2 \text { set value), the } \mathrm{S} 0 \text { judgement display }}$ and the S 0 open collector output will be normally OFF.
(3) When the S1 selects "more than", and the S2 selects "less than" at the function F-32.

S1 judgement display, S1 open collector output
S2 judgement display, S2 open collector output
S0 judgement display, S0 open collector output

ON at (S1 set value) \leq (display value)
ON at (S2 set value) \geqq (display value)
Normally OFF

- Above figure indicates the case of (S 1 set value) < (S 2 set value).

In the case of (S 1 set value) \geqq (S 2 set value), the S 0 judgement display and the S 0 open collector output will ON in the condition of (S2 set value) $<$ (display value) $<$ (S1 set value)
(4) When both of the S1 and S2 select "less than" at the function F-32

S1 judgement display, S1 open collector output
S2 judgement display, S2 open collector output
S0 judgement display, S0 open collector output

ON at (S1 set value) \geqq (display value)
ON at (S2 set value) \geqq (display value)
ON at (S1 set value) < (display value) and also (S2 set value) < (display value) at the same time.

7-2-6. Hysteresis on comparator
The comparator S1, S2, S3 and S4 and normal mode for S0 (Function F-33: 00002 setting) can set hysteresis.
Hysteresis can be used by the combined setting of data width and time width. Moreover, effective direction for hysteresis can be selected from either "Off delay" or "On delay". These selections can be made in Function mode. (Related function F-34, F-35, F-36) As for default, hysteresis "OFF" is set.

\. Warning - Depending on the setting of comparator hysteresis, ON/OFF condition for each open collector output may differ. If wrong mode is selected, ON/OFF condition for contact output becomes inadequate and it may cause an unexpected accident due to malfunctions on peripheral instruments, so care should be taken fully.

As for the example of S 1 , the operation of judgement display section and the open collector output when the hysteresis on comparator is set, will be shown as follows :
The same operation will be obtained in the case of "Normal mode" at S2, S3, S4 and S0.
(1) When the operation of "the open collector ON at more than the set value" is selected at S 1 and also effective direction for hysteresis is set as "On delay".

(2) When the operation of "the open collector ON at more than the set value" is selected at S1 and also effective direction for hysteresis is set as "Off delay".

(3) When the operation of "the open collector ON at less than the set value" is selected at S1 and also effective direction for hysteresis is set as "On delay".

(4) When the operation of "the open collector ON at less than the set value" is selected at S1 and also effective direction for hysteresis is set as "Off delay".

$7-3$. How to use the filter
The instrument prepares the digital filter that stabilizes data converted into digital through calculation process.

When setting filter is not suitable, correct measurement can not be made and it may cause an unexpected accident, so care should be taken fully.

7-3-1. Analog filter

The instrument can change the pass band for the analog filter into 4 steps,such as $2 \mathrm{~Hz}, 4 \mathrm{~Hz}$ 6 Hz 8 Hz and 10 Hz . (Related function $\mathrm{F}-05$)

As for default, " 4 Hz " is selected.
The tendency of characteristics by the frequency are listed as below :

Averaged out times	2 Hz	4 Hz	10 Hz	100 Hz	2 kHz
Resist to noise Response speed	stable slow	\sim	rapid quick		

7-3-2. Digital filter
The digital filter for the instrument can be set from " 00000 " to " 00006 ".
The strength of the digital filter is decided depending on the set value. (Related function F -04) As for default, " 00001 " is selected.
The relation between setting of the digital filter and the cut-off frequency is shown in the table below.

A/D sampling rate $(\mathrm{F}-02)$	Setting of digital filter ($\mathrm{F}-04$)						
	00000	00001	00002	00003	00004	00005	00006
200 times/s	Digital filter OFF	2.200 Hz	1.100 Hz	0.740 Hz	0.550 Hz	0.440 Hz	0.350 Hz
100 times/s		1.100 Hz	0.550 Hz	0.370 Hz	0.275 Hz	0.220 Hz	0.175 Hz
50 times/s		0.550 Hz	0.275 Hz	0.175 Hz	0.138 Hz	0.110 Hz	0.088 Hz
20 times/s		0.220 Hz	0.110 Hz	0.070 Hz	0.055 Hz	0.044 Hz	0.035 Hz
10 times/s		0.110 Hz	0.055 Hz	0.037 Hz	0.028 Hz	0.022 Hz	0.018 Hz

The cut-off frequency can be selected by combining each digital filter setting and the A / D sampling setting. The cut-off frequency corresponds to the decrement of almost -3 dB .

- The cut-off frequency shown in the above-mentioned table is a status to set "Stabilization filter" in turning off. Filters might strengthen more than cut-off frequency in the above-mentioned table according to the condition when "Stabilization filter" is used according to clause 7-6.

7-4. Selection of A/D sampling rate

This instrument can select the A/D sampling rate from "10 times/s", "20 times/s", "100 times/s" and "200 times/s" (Relative function F-02). As for default, "200 times/s" is set.

- The comparator comparison operation and the analog output of this unit have synchronized with the A/D sampling. Therefore, execute the change in the A / D sampling rate when you change the conversion rate of the comparator and conversion rate of the analog output.

$7-5$. Zero tracking

The instrument prepares the zero tracking in order to compensate for slow drift of zero.

Effective only when the A / Z mode is selected.
$7-5-1$. What is zero tracking?

- Zero tracking is a function to cancel the slow drift of zero within the constant conditions, and also to follow the zero point of the instrument in order to stabilize zero point.
- When the data variation within the set time with function $\mathrm{F}-09$ is within the set value set with the function $\mathrm{F}-08$ against the zero point, then the input will be cancelled as the zero point. However, when the zero point compensation for the total " $\pm 10 \%$ of the maximum display value" at the zero tracking and zero set are completed until that time, the further directional zero tracking will not executed.

7-5-2. Setting related with zero tracking

- Set the data width that performs zero tracking with the function $\mathrm{F}-08$. The zero tracking width per setting value " n " will be obtained by the calculation of display according to the below formula.
(Zero tracking data width) $=($ Set value of $\mathrm{F}-08) \times 0.5 \times$ (Increment value for display) For example, when the setting of function $\mathrm{F}-07$ is " 00010 " and the increment value for display is " $\mathrm{D}=5$ ", then (Zero tracking data width) will be as follows:

$$
\begin{aligned}
(\text { Zero tracking data width }) & =10 \times 0.5 \times 5 \\
& =25 \mathrm{D}
\end{aligned}
$$

- Set the time width performs zero tracking with the function $\mathrm{F}-08$.

- When the load shows slow vibration in the vicinity of zero, never use the zero tracking.
- When the variation of load display becomes moderate due to the strength/weakness of the digital filter and stabilized filter, there may have the case that the zero tracking becomes effective even when the actual load variation is rapid, so care should be taken fully.

Cancellation for compensated data by zero tracking can be executed with the function $\mathrm{F}-98$.

- When changing the target for zero tracking is required, be sure to cancel the compensated portion by zero tracking once using the function $\mathrm{F}-98$.
- When the load display is a gross weight, the zero tracking of this unit becomes effective. Therefore, the zero tracking does not work at the time of the $\mathrm{A} / \mathrm{Z} \mathrm{ON}$.

7-6. Stabilization filter
This instrument is equipped with the stabilization filter as a function for a digital filter to work strongly when the state that change width of load indicated value is within the set range continues longer than the fixed time.
$7-6-1$. What is the Stabilization filter?
The stabilization filter is the function that a digital filter set by $\mathrm{F}-15$ becomes effective when the state continues longer than the time set by $\mathrm{F}-16$ that the change width of load indicated value is within the range set by $\mathrm{F}-17$.

7-6-2. Setting related with the Stabilized filter.

- Set the data to apply the Stabilized filter with the function F-17. The stabilized filter width per set value " n " can be obtained through the display conversion by using the following formula.
[Stabilized filter data width] $=[$ Set value of $\mathrm{F}-17] \times$ [Display increment value]
For example, when the setting of function $\mathrm{F}-17$ is " 00010 " and the display increment is " $\mathrm{D}=5$ ", then
[Stabilized filter data width] $=10 \times 5$

$$
=50
$$

- Data width supervisory time for the Stabilized filter can be set with the function F-16.
- The digital filter for Stabilized filter can be set with the function F-15.

Setting from " 00000 " to " 00006 " is possible, and strength of the stabilization filter is decided depending on the set value. The filter works strongly depends on growing of the set value.

- Moreover, when the digital filter has set with the function F-04, the calculation processing of the stabilization filter is executed as a result of the calculation process being done with the digital filter.
- When the stabilization filter is effective, the filter might strengthen more than cut-off frequency in the paragraph 7-3-1.

7-7. Detection of stability

The function to detect stability is judged that the measuring value is steady when the status that the change width of total load value is within the range set by the data width to detect stability, continues longer than the time set by the time to detect stability.
$7-7-1$. Range to detect stability
Execute the setting of range to detect stability with the function F-65.
It can be set the range of [00000] ~ [00099] every [0.5]D.
OFF when set the [00000]. Default is set as [00010].
Detection of stability data range of the set value per [n] is calculated the method below in case of showing in display.
[detection of stability data range] $=0.5 \mathrm{D} \times$ [detection of stability range coefficient n$] \times$ [scale interval]
Setting of detection of stability range coefficient is [00040] and minimum divisions are [$\mathrm{D}=2$], [range to detect stability] $=0.5 \mathrm{D} \times 40 \times 2$

$$
=40 \mathrm{D}
$$

$7-7-2$. Time to detect stability
Execute the setting of time to detect stability with the function $\mathrm{F}-65$.
It can be set the range of [00000] \sim [00099] every [0.1]s.
OFF when set the [00000]. Default is set as [00005].
[time to detect stability] $=0.1 \mathrm{~s} \times$ [time to detect stability coefficient]

$7-8$. Various kinds of functions related with the display

$7-8-1$. Selection of display rate

The instrument can select the display times from the " 4 times $/ \mathrm{s}$ ", " 20 times $/ \mathrm{s}$ ", " 50 times $/ \mathrm{s}$ " and "100 times/s". This selection is available in the Function mode. (Related function F-03). As for the default, 20 times/s has selected.
$7-8-2$. Selection of decimal point display position
The instrument can display the decimal point at the "Load display section" of the instrument. The selection of display can be made in the Function mode. (Related function F-01) As for the default, "No decimal point display" has selected.
$7-8-3$. Load display range
The load display range for the instrument is fixed from the -10% to 110% of the maximum display value at the time of setting during calibration.

When less than the range, " - OL" displays and over the range "OL" displays. For example, when the maximum display value is " 1000 ", the load display range will be from - 100 to 1100 . Besides, when under - 100, the "- OL" displays, and over 1100 , the "OL" will display.

7-9. Selection the target for HOLD

The instrument can select the target for HOLD function among "load display", "comparator S0 open collector output, LED display", "comparator S1, S2 open collector output, LED display", "Analog output" and "Optional BCD output".
This selection can be made in the Function mode(Related function $\mathrm{F}-10$).
As for the default, "All is selected." Layout of setting for the $\mathrm{F}-10$ are as follows :
10^{0} digit : Load display
10^{1} digit : Comparator S 0 open collector output, LED display
10^{2} digit : Comparator S1, S2 open collector output, LED display
10^{3} digit : Optional analog output
10^{4} digit : Optional BCD output
※With the " 0 " setting, out of the target, and with " 1 " setting, target of HOLD.

$7-10$. Change of bridge power supply voltage

The instrument can select the bridge power supply from " 10 V ", " 5 V " and " 2.5 V ". This selection can be made in the Function mode(Related function $\mathrm{F}-12$). As for the default, " 10 V " has selected.

When the bridge power supply voltage is changed, make calibration again.

7 －11．Tare weight cancellation（A／Z）

The instrument prepares Tare weight cancellation（A／Z）function．
Pressing the A / Z key makes Tare weight cancellation（A／Z）function operated and when the load display becomes net weight display，at the same time，the＂A／Z＂lights up on the status display and load display value becomes＂ 0 ＂．

Moreover，when the | A / Z |
| :---: |
| $O F$ | key is pressed，Tare weight cancellation clear（A／Z OFF）function will activate and at the same time when the load display value becomes gross weight，the＂ A / Z＂on the status display will turn off．

7－12．Zero set
The instrument prepares the zero set function．
When the display value on load display is within $\pm 10 \%$ against the maximum display value（Refer to the chapter 5．），pressing the $\frac{\text { ZERO }}{\Delta}$ key makes zero set function operated and the display will show ＂ 0 ＂compulsively．
However，zero set will not be accepted when zero compensation for total $\pm 10 \%$ is executed with zero set and zero tracking until that time．（ER－0 display）
Also，the same operation can be made with the operation of＂ZERO＂at the external control input signal．Cancellation for data applied zero compensation by zero set can be executed with Function F－98．
－When tare weight cancellation（ A / Z ）is executed（during A / Z display lights up），zero set will not be accepted．It will display＂ER－5＂． When zero set is desired to execute，execute after making the Tare weight cancellation clear（A／Z OFF）．

$7-13$ ．Key lock function

The instrument prepares key lock function．
With the Function $\mathrm{F}-06$ ，execute key lock OFF by setting each digit＝0，and executes key lock ON by setting each digit＝1．As for default，all is key lock OFF．Besides，the correspondence between the target of key lock and setting digits are as follows：

10^{1} 桁： $\mathrm{A} / \mathrm{Z} \mathrm{ON}(\mathrm{A} / \mathrm{Z}), \mathrm{A} / \mathrm{Z} \mathrm{OFF}\binom{\mathrm{A} / \mathrm{ZF}}{$\hline FF}
10^{2} 桁：Call changing mode of the $\mathrm{S} \% \operatorname{set}(\stackrel{5 \%}{4})$
10^{3} 桁 ：Execution of zero setting $\left(\frac{\frac{\text { ZERO }}{\Delta}}{\Delta}\right)$
10^{4} 桁：Call the function mode（ $\binom{$ CHEEKN }{ Func．}
Moreover，when the call the function mode（

7-14. CHECK value

 value corresponding to the set value in the function $\mathrm{F}-11$. At the same time, "CHECK" in the condition display lights on, and the load value corresponding to the set value in the function $\mathrm{F}-11$ is added on the load display value. As for default, $0.3 \mathrm{mV} / \mathrm{V}$ has been set.
 returns to the former condition as it is.

- When the setting of Function $\mathrm{F}-11$ is " 00000 ", the load display value will not vary even if the "CHECK" lights up on the condition display. (Because CHECK is $0.0 \mathrm{mV} / \mathrm{V}$.)
- When the CHECK value is ON condition, the RUN output of open collector is OFF and RUN LED in the condition display turns off.
$7-15$. Record place of set data etc.
This instrument records the each data in the RAM and EEPROM as follows.
As the EEPROM is nonvolatile, it is stored semi-permanently.
Also, RAM is kept by the battery. The backup time is about ten years in the room temperature.
(1) Data recorded in the RAM
- A/Z data
- ZERO data
- ZERO tracking data
available to clear by A/Z OFF
available to clear by the execution of $\mathrm{F}-98$
available to clear by the execution of $\mathrm{F}-98$
(2) Data recorded in the EEPROM
- FUNC data
- Calibration data
- Fine adjustment data of analog output
- Each set value of the comparator S 0 to S 4 available to clear by the change of each set value

7-16. Prohibition of calibration
The instrument prepares the setting for prohibition of calibration to prevent from excessive calibrations. This setting can be made in the Function mode(Related Function F-97).
As for the default, "Possible to calibrate" has selected.
The targets of prohibition are each calibration described in the Chapter 5, and each fine adjustment on the analog output described in the paragraph $9-1-7$ and the paragraph $9-1-8$. When executing the calibration with the set of Prohibition of calibration, the "ER-6" is displayed.

7-17. Check mode

The following confirmations can be made in the Check mode.

- Check on ROM version
- Check on the option installed.
- Check on bridge voltage
- Check on the external control input
- Check on the open collector output
- Check on the analog output(option)
- Check on the BCD output (option)
- The confirmation of the analog output can operates only when analog output is installed.
- The check on the BCD output operates when the BCD output is installed.
- The instrument can return to the Measurement mode by pressing the

$7-17-1$. Operating procedure for the check mode
- When the $\stackrel{S *}{4}$ key is pressed with the load display of "FUNC", the display will change as the following arrow marks indicate at every time the key is pressed. However, every time the $\frac{\overline{Z E R O}}{\Delta}$ key is pressed, the display will change as the reverse direction of the following arrow marks.
"FUNC" \rightarrow "CCAL" \rightarrow "ACAL" \rightarrow "LCAL" \rightarrow "ZERO" \rightarrow "SPAN"
\rightarrow "TARE" \rightarrow "CHEK" \rightarrow "MONT" \rightarrow "VCAL" \rightarrow "VADJ" \rightarrow "FUNC"
\rightarrow "CCAL" \rightarrow • • (Hereinafter over and over again.)

	Procedures	
3	- Check on the ROM version The Check mode can be entered, and the display on the load display section will show "ROM". By pressing the $\xlongequal[\substack{\text { Snlfite } \\ \text { ENITR }}]{\text { key again, the }}$ ROM version will be shown on the load display section. In the Check mode, when the display on the load display section will be the one in the below, the display can be changed by the ${ }^{\frac{5 *}{4}}$ key operation. key : key : \uparrow	

	Procedures	
5	Check on the bridge power supply voltage The load display shows "bV". By pressing the sintir key again, the bridge power supply voltage selected at present is shown on the load display section.	
6	- Check on the external control input Press the The load display shows "IN". By pressing the $\stackrel{\text { sinfer }}{\text { Eimed }}$ key again, the load display section changes into the "IN" flashing on and off. At the same time, the ON/OFF condition of external control input signal can be monitored on the Status display LED. As the input from the key is not accepted during the LOCK input, set the LOCK input OFF after the confirmation.	

	Procedures	
7	- Check on the open collector output Press the $\stackrel{\text { SHIFT }}{\text { EnTER }}$ key. The display of the load display section becomes "S-OUT". Press the $\xlongequal[\substack{\text { SHITET } \\ \text { ENTR }}]{\text { key again, the load display }}$ section displays "S0" and flashes on and off. At the same time, by the operations of right keys, each open collector output, each judgement display and load display section changes as below:	key : Set ON the each open collector output from the above to the below in order on the right figure. key : Set ON the each open collector contact output from the below to the above in order on the right figure. RUN display : RUN output ERROR display : ERROR output S0 display : S0 output S1 display : S1 output S2 display : S2 output S3 display: S3 output S4 display: S4 output

7-18. Monitor mode

In the Monitor mode, the applied load on the strain gage applied transducer at present can be displayed with the converted unit of mV / V.
For example, in case that the load cell is used, and its output value is unclear, apply actual load in order to read the output value at the time of initial load application and also at the time of the maximum load application by using the function and then make calibration with the obtained value as a base.

- The display value in the Monitor mode is a reference value.

The accuracy of display is 0.5% approximately.

- In the Monitor mode, the range which can be monitored is from $-3.1 \mathrm{mV} / \mathrm{V}$ to $3.1 \mathrm{mV} / \mathrm{V}$ approximately.
- When the $\frac{S_{*}}{4}$ key is pressed with the load display of "FUNC", the display will change as the following arrow marks indicate at every time the key is pressed. However, every time the $\frac{\text { ZERO }}{\triangle}$ is pressed, the display will change as the reverse direction of the following arrow marks.
"FUNC" \rightarrow "CCAL" \rightarrow "ACAL" \rightarrow "LCAL" \rightarrow "ZERO" \rightarrow "SPAN"
\rightarrow "TARE" \rightarrow "CHEK" \rightarrow "MONT" \rightarrow "VCAL" \rightarrow "VADJ" \rightarrow "FUNC"
\rightarrow "CCAL" CD (Hereinafter, over and over again.)

	Procedures	
2	Press the $\frac{[\text { ZERO }}{4}$ key 8 times. The load display will change as "FUNC" \rightarrow "CCAL" \rightarrow "ACAL" \rightarrow "LCAL" \rightarrow "ZERO" \rightarrow "SPAN" \rightarrow "TARE" \rightarrow "CHEK" \rightarrow "MONT".	
3	 The Monitor mode can be entered, and the converted value into mV / V for the present input value for the transducer flashes on and off on the load display.	
4	Press the ${ }^{\text {SNATHET}}$ key. The load display shows "END".	

	Procedures	
5	 The Monitor mode can be over, and the present load is shown on the load display.	

8. Function mode

During the measurement mode, the setting can change by the function mode.
$8-1$. Setting method for function mode

	Procedures	
1	 The load display shows "FUNC".	
2	Press the $\stackrel{\text { SHITFT }}{\text { ENTER }}$ The function mode can be entered, then the load display will show " $\mathrm{F}-* *$ ", and the digit of 10^{0} will flash on and off. The last called Function No. is shown at **. Suspend the setting of Function mode, then press mode is required.	

	Procedures	
3	Select the Function No. desired to set with the right keys. Suspend the setting of Function mode, then Measurement mode can be re-entered by By pressing the key continuously, continuous increase will be provided.	
4	Press the $\stackrel{\text { SHMFIT}}{\text { ENTER }}$ key. Content of setting Function that has selected will be displayed and the digit of 10^{0} will flash on and off. Change the setting with the right keys. Press the Function mode, then return to the measurement mode. By pressing the key continuously, continuous increase will be provided.	\square key : Set value carry key key : Set value inclement key key : Set value initialization key
5	Press the $\stackrel{\text { SHHFIT }}{\text { ENIER }}$ key. The set contents are registered, then the load display returns to the registered Function No., and the 10^{0} digit will flash on and off. Setting another Function No. is desired, return to step 3 .	(e)

- F-01 Selection of decimal point at display position

Initial value $=00000 \quad 00000=$ Non
$00001=10^{1}$
$00002=10^{2}$
$00003=10^{3}$
$00004=10^{4}$

- F-02 Selection of A/D sampling rate

Initial value $=00004 \quad 00000: 10$ times/s
00001: 20 times/s
00002 : 50 times/s
00003 : 100 times/s
00004 : 200 times/s

- F-03 Selection of display rate

Initial value $=00001 \quad 00000=4 \mathrm{times} / \mathrm{s}$
$00001=20 \mathrm{times} / \mathrm{s}$
$00002=50$ times $/ \mathrm{s}$
$00003=100$ times $/ \mathrm{s}$

- F-04 Setting digital filter

Initial value $=00001$ Setting range : $=00000 \sim 00006$
※Select the average times for digital filter. When the figure grows larger, the filter becomes stronger, then effects from vibrations and so on are shown scarcely on the display. However, if too large figure is selected, the response to variation of input sensor will become worse.
※Using the digital filter where vibrations and so on may exist is effective for removing the deflection on the display.

- F-05 Setting analog filter

Initial value $=00001 \quad 00000=2 \mathrm{~Hz}$
$00001=4 \mathrm{~Hz}$
$00002=6 \mathrm{~Hz}$
$00003=8 \mathrm{~Hz}$
$00004=10 \mathrm{~Hz}$

- F-06 Setting the function key lock

Initial value $=00000 \quad 10^{0}$ digit : ON/OFF of CHECK value
(Press the $\frac{\substack{\text { cinew } \\ \text { Humc. }}}{\text { key together with the }}$
10^{1} digit : ON/OFF of the A / Z function

$$
\mathrm{A} / \mathrm{Z} \mathrm{ON}(\sqrt{\mathrm{~A} / Z}), ~ \mathrm{~A} / \mathrm{Z} \mathrm{OFF}\left(\begin{array}{c}
\left.A / \begin{array}{c}
A / Z \\
\mathrm{OFF}
\end{array}\right)
\end{array}\right)
$$

10^{2} digit : Call the change mode of S ※ setting ($\left(\frac{5 *}{4}\right)$,
10^{3} digit : Execution of zero set $\left(\frac{\text { zERO }}{\Perp}\right)$

※Key lock cancellation is made by setting " 0 ", and key lock is made by setting " 1 ". Moreover, when the "Call the function mode" is locked, the function mode can be
 key for more than 1 second.

- F-08 Setting zero tracking data width

Initial value $=00000 \quad 00000=$ Zero tracking OFF
Setting range : 00000~00099
Unit : 0.5D
Data width of 49.5 D with the setting " 00099 ".
※Effective only when the value of $00001 \sim 00099$ is set with the $\mathrm{F}-09$.

- F-09 Setting zero tracking time width

Initial value $=00020 \quad 00000=$ Zero tracking OFF
Setting range : 00000~00099
Unit: 0.1 s
Time width of 9.9 s with the setting " 00099 ".
※Effective only when the value of 00001~00099 is set with the $\mathrm{F}-08$.

- F-10 Setting of the target of HOLD

Initial value $=11111 \quad 10^{0}$ digit : Load display
10^{1} digit : Comparator S 0 open collector output, LED display
10^{2} digit : Comparator S1, S2, S3 and S4 open collector output,
LED display
10^{3} digit : Analog output
10^{4} digit : Optional BCD output
※Out of the HOLD target at the setting " 0 ", and the HOLD target is available at the setting " 1 ".

- F-11 Setting the CHECK value

Initial value $=00003$ Setting range : 00000~00024
Unit : $0.1 \mathrm{mV} / \mathrm{V}$
Approx. $2.4 \mathrm{mV} / \mathrm{V}$ CHECK value at the setting " 00024 ".

- F-12 Setting bridge power supply voltage

Initial value $=00000 \quad 00000: 10 \mathrm{~V}$
00001 : 5 V
00002: 2.5 V

- F-15 Setting digital filter for stabilized filter

Initial value $=00002 \quad 00000=$ Stabilized filter OFF
Setting range : 00000~00006
※Strength of the digital filter for the stabilization filter is selected. The influence on the display such as the vibrations decreases so that the filter may strengthen when the figure grows.
※Effective only when setting is made with the value from 00001 to 00099 with the $\mathrm{F}-16$, and the value from 00001 to 00999 is set with the $\mathrm{F}-17$.

- F-16 Setting time width for stabilized filter

Initial value $=00020 \quad 00000=$ Stabilized filter OFF
Setting rage : 00000~00999
Unit: 0.01 s
Time width of 9.99 s at the setting of "00999".
※Effective only when the value from 00001 to 00006 with the $\mathrm{F}-15$ and the value from 00001 to 00999 with the $\mathrm{F}-17$ are set.

- F-17 Setting data width for stabilized filter

Initial value $=00020 \quad 00000=$ Stabilized filter OFF
Setting rage : 00000~00999
Unit: 1D
Data width of 999D at the setting of "00999".
※Effective only when the value from 00001 to 00006 with the $\mathrm{F}-15$ and the value from 00001 to 00999 with the F-16 are set.

- F-20 Setting the target of analog output

Initial value $=00000 \quad 00000:$ Gross weight
00001 : Net weight

- F-21 Display value at the time of the minimum analog output

Initial value $=00000$ Setting rage -99999~99999

- F-22 Display value at the time of the maximum analog output

Initial value $=02000$ Setting rage -99999~99999

- F-30 Setting comparator operation

Initial value $=111110=\mathrm{OFF}$
$1=\mathrm{ON}$
10^{0} digit : Comparator S0
10^{1} digit : Comparator S1
10^{2} digit : Comparator S2
10^{3} digit : Comparator S3
10^{4} digit : Comparator S4

- F-31 Setting the target of comparator

Initial value $=00000 \quad 0=$ Gross weight
1 = Net weight
10^{0} digit : Comparator S0
10^{1} digit : Comparator S1
10^{2} digit : Comparator S2
10^{3} digit : Comparator S3
10^{4} digit : Comparator S4
※The comparator S 0 is effective in the setting 00007 by $\mathrm{F}-33$.

- F-32 Setting the direction of comparator

Initial value $=00000 \quad 0=$ or more
1 = or less
10^{0} digit : Comparator S0
10^{1} digit : Comparator S1
10^{2} digit : Comparator S2
10^{3} digit : Comparator S3
10^{4} digit : Comparator S4
※The comparator S0 is effective in the setting 00007 by $\mathrm{F}-33$.

- F-33 Setting applicable condition for the comparator S0

Initial value $=00000 \quad 00000=$ ON when load display value \geqq the maximum display value
$00001=$ ON when both S1 and S2 open collector output are OFF.
$00002=$ ON when both S1 and S3 open collector output are OFF.
$00003=$ ON when both S1 and S4 open collector output are OFF.
$00004=\mathrm{ON}$ when both S 2 and S3 open collector output are OFF.
$00005=\mathrm{ON}$ when both S 2 and S 4 open collector output are OFF.
$00006=\mathrm{ON}$ when both S3 and S4 open collector output are OFF.
00007 = Operation whichever "open collector ON over the set value" or "open collector ON less than the set value"
00008 = Interlocked with HOLD LED
00009 = Interlocked with A/Z LED
00010 = Interlocked with LOCK LED
$00011=$ ON when the detection of stability

- F-34 Setting the condition of Hysteresis operation for comparator

Initial value $=00000 \quad 00000=$ ON delay
$00001=$ OFF delay

- F-35 Hysteresis data width OFF

Initial value $=00000 \quad 00000=$ Hysteresis data width OFF
Setting rage : 00000~00099
Unit: 1D
Data width of 99D at the setting of "00099".

- F-36 Setting Hysteresis time width for comparator

Initial value $=00000 \quad 00000=$ Hysteresis time width OFF
Setting rage : 00000~00099
Unit: 0.01 s
Data width of 9.99 s at the setting of "00999"

- F-40 Setting the target of BCD output(Effective when the option is installed.)

Initial value $=00000 \quad 00000=$ Gross weight
$00001=$ Net weight
$00002=$ Changeover of external input

- F-41 Setting the logic of BCD output (Effective when the option is installed.)

Initial value $=00000 \quad 00000=$ Negative logic
$00001=$ Positive logic

- F-42 Setting the polarity of BCD output (Effective when the option is installed.)

Initial value $=00000 \quad 00000=$ Negative logic
$00001=$ Positive logic

- F-43 Setting the logic of BCD flag output (Effective when the option is installed.)

Initial value $=00000 \quad \begin{aligned} & 00000=\text { Negative logic } \\ & 00001=\text { Positive logic }\end{aligned}$

- F-44 Setting the logic of BCD P.C. output (Effective when the option is installed.)

Initial value $=00000 \quad 00000=$ Negative logic
$00001=$ Positive logic

- F-45 Setting the BCD P.C. width(Effective when the option is installed.)

Initial value =00001 $\begin{array}{ll}00000=125 \mathrm{~ms} \\ & 00001=25 \mathrm{~ms} \\ & 00002=10 \mathrm{~ms} \\ & 00003=5 \mathrm{~ms} \\ & 00004=2.5 \mathrm{~ms}\end{array}$

- F-46 Setting the BCD output rate(Effective when the option is installed.)
initial value $=00001 \quad 00000=4 \mathrm{times} / \mathrm{s}$
$00001=20$ times $/ \mathrm{s}$
$00002=50$ times $/ \mathrm{s}$
$00003=100$ times $/ \mathrm{s}$
$00004=200$ times $/ \mathrm{s}$
- F-50 Setting the operation mode of RS-232C
(Effective when the option is installed.)

$$
\begin{array}{ll}
\text { Initial value }=00001 & 00000=\text { Stream mode } \\
& 00001=\text { Command mode }
\end{array}
$$

- F-51 Setting the target of output at the time of stream mode of RS-232C
(Effective when the option is installed.)
Initial value $=00000 \quad 00000=$ Gross weight
00001 = Net weight
00002 = Display interlock
※In the Command mode, the data are transferred from the host by the command.
In the Stream mode, the latest data will be output continuously.
- F-52 Setting the baud rate of RS-232C/422/485
(Effective when the option is installed.)
Initial value $=0000300000=1200 \mathrm{bps}$

$$
00001=2400 \mathrm{bps}
$$

$00002=4800 \mathrm{bps}$
$00003=9600 \mathrm{bps}$
$00004=19200$ bps
$00005=38400 \mathrm{bps}$

- F-53

Setting the data bit length and parity of RS-232C/422/485
(Effective when the option is installed.)
Initial value $=0002110^{0}$ digit : Setting data bit length
$0=8$ bit
$1=7$ bit
10^{1} digit : Setting parity
$0=$ No parity
1 = Even number parity
$2=$ Odd number parity

- F-54 Setting the stop bit of RS-232C/422/485
(Effective when the option is installed.)
Initial value $=00000 \quad 00000: 1$ bit
00001 : 2 bits
- F-55 Setting the terminator of RS-232C/422/485
(Effective when the option is installed.)
Initial value $=00001 \quad 00000: C R$
00001 : CR+LF
- F-56 Setting the decimal point of sending code of RS-232C/422/485
(Effective when the option is installed.)
Initial value $=00000 \quad 00000:$ No decimal point
00001 : Yes of Decimal point
- F-57 Setting the ID number of RS-422/485(Effective when the option is installed.)

Initial value $=00000$ Setting range : $00000 \sim 00031$

- F-58 Changing RS-422/485(Effective when the option is installed.)

Initial value $=00000 \quad 00000: R S-422$
00001 : RS-485

- F-59 Setting the delay time of returning RS-485

Initial value $=00005$ Setting range : 00000~00999
Unit 1 ms
The delay is 999 ms at the "00999" setting.

- F-65 Setting the detection of stability range

Initial value $=00010 \quad 00000:$ Detection of stability OFF
Setting range : 00000~00099
Unit 0.5D
※Effective only when the value from 00001 to 00099 with the $\mathrm{F}-66$

- F-66 Setting the detection of stability time

Initial value $=00005 \quad 00000:$ Detection of stability OFF
Setting range : 00000~00099
Unit 0.1 s
※Effective only when the value from 00001 to 00099 with the $\mathrm{F}-65$

- F-72 Setting the effective time for external control input

Initial value $=00000 \quad 00000: 50 \mathrm{~ms}$
00001 : 20 ms
00002 : 10 ms
00003 : 5 ms
00004: 2 ms

- F-84 Setting the occupied station number of CC-LINK (Effective when the option is installed)
$\begin{array}{ll}\text { Initial value }=00002 & 00000: 1 \text { station } \\ & 00001: 2 \text { stations } \\ & 00002: 4 \text { stations }\end{array}$

Change the setting of the occupied station number is corresponded to the software of the instrument after the ROM Ver1.800.
The occupied station number is fixed as 4 before the ROM Ver1.700.

- F-85 Setting the station number of CC-LINK
(Effective when the option is installed)
Initial value $=00001$ Setting range : 00001~00061
- F-86 Setting the baud rate of CC-LINK
(Effective when the option is installed)
Initial value $=00000 \quad 00000: 156 \mathrm{kbps}$
00001: 625 kbps
00002: 2.5 Mbps
00003: 5 Mbps
00004 : 10 Mbps
- F-87 Setting of the numeric expression of minus

Initial value $=00000 \quad 00000:$ Expression of standard binary
($-1=$ FFFFFFFFH)
00001 : At minus, The most significant digit is fixed to " 8 ". $(-1=80000001 \mathrm{H})$

- F-90 Increment value (For reference)
※The increment value set when the calibration is applied can be referred to.
※The setting can't be changed in the function.
- F-91 The maximum display value (For reference)
※The maximum display value set when the calibration is applied can be referred to.
※The setting can't be changed in the function.
- F-92 The actual load value (For reference)
※The actual load value set when the calibration is applied(LCAL) can be referred to.
※When the calibration except LCAL is made, this value will not change.
※The setting can't be changed in the function.
- F-93 Zero calibration value (For reference)
※The input voltage value that has read as the initial load value at the time of executing calibration can be referred to.
※The setting can't be changed in the function.
- F-94 Span calibration value (For reference)
※The input voltage value at the time of the maximum display can be referred to.
※The setting can't be changed in the function.
- F-97 Prohibition of calibration

Initial value $=00000 \quad 00000=$ Possible to calibrate
$00001=$ Prohibition from calibration

- F-98 ZERO clear

Zero compensated data by zero set function can be cancelled.
When the $\xlongequal[\substack{\text { SHIFTITR } \\ \text { ENTER }}]{ }$ key is pressed with "F-98" displayed, "ZCLR" can be displayed.
(At the same time, the display lights on and off.)

Measurement mode can be returned and Zero clear will not be executed.
When the $\xlongequal[\substack{\text { SHIFER } \\ \text { ENTNR }}]{\text { key }}$ ke pressed while "ZCLR" display lights on and off, " $\mathrm{F}-98$ " display can be returned. Now, ZERO clear has completed.

- F-99 Memory clear

Setting from $\mathrm{F}-01$ to $\mathrm{F}-97$ recorded at EEPROM will return to the default value.
When the $\xlongequal[\substack{\text { SHAFTV } \\ \text { ENTER }}]{\text { key is pressed with the display of F-99, then "FCLR" display can be }}$ obtained. (At the same time, the display lights on and off.) At this point, press the $\begin{gathered}\text { 댄ㅌN } \\ \text { Func. }\end{gathered}$ key when suspending memory clear is desired. Measurement mode can be returned and Memory clear will not be executed.
When the $\underset{\substack{\text { SHIFT } \\ \text { ENTER }}}{\text { key is pressed during "FCLR" load display lights on and off, and after }}$ about 1 second, it will become "FUNC" display and the operation of Memory clear has completed.

\. Warning © Never use the following functions because they may destroy the

 functions at internal of the instrument.| $\mathrm{F}-00$ | $\mathrm{~F}-07$ | $\mathrm{~F}-13$ | $\mathrm{~F}-14$ | $\mathrm{~F}-18$ | $\mathrm{~F}-19$ | $\mathrm{~F}-23$ | $\mathrm{~F}-24$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{~F}-25$ | $\mathrm{~F}-26$ | $\mathrm{~F}-27$ | $\mathrm{~F}-28$ | $\mathrm{~F}-29$ | $\mathrm{~F}-37$ | $\mathrm{~F}-38$ | $\mathrm{~F}-39$ |
| $\mathrm{~F}-47$ | $\mathrm{~F}-48$ | $\mathrm{~F}-49$ | $\mathrm{~F}-60$ | $\mathrm{~F}-61$ | $\mathrm{~F}-62$ | $\mathrm{~F}-63$ | $\mathrm{~F}-64$ |
| $\mathrm{~F}-67$ | $\mathrm{~F}-68$ | $\mathrm{~F}-69$ | $\mathrm{~F}-70$ | $\mathrm{~F}-71$ | $\mathrm{~F}-73$ | $\mathrm{~F}-74$ | $\mathrm{~F}-75$ |
| $\mathrm{~F}-76$ | $\mathrm{~F}-77$ | $\mathrm{~F}-78$ | $\mathrm{~F}-79$ | $\mathrm{~F}-80$ | $\mathrm{~F}-81$ | $\mathrm{~F}-82$ | $\mathrm{~F}-83$ |
| $\mathrm{~F}-88$ | $\mathrm{~F}-89$ | $\mathrm{~F}-95$ | $\mathrm{~F}-96$ | | | | |

9. Options

The options for the instrument are as follows:
(1) Current output[4 mA to 20 mA]
(2) BCD output

Parts No. : CSD891B-P07
(3) Voltage output [0 V to 10 V]
(4) CC-LINK interface

Parts No. : CSD891B-P15
Parts No. : CSD891B-P25
Parts No. : CSD891B-P73
[Refer to the instruction manual (DRW. No.294-1146 *) for CSD-891B-73)
(5) RS-232C interface Parts No. : CSD891B-P74
(6) RS-422 interface

Parts No. : CSD891B-P76

	P07	P15	P25	P73	P74	P76
P07	-	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc
P15	\bigcirc	-	\bigcirc	\times	\times	\times
P25	\times	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc
P73	\bigcirc	\times	\bigcirc	-	\times	\times
P74	\bigcirc	\times	\bigcirc	\times	-	\times
P76	\bigcirc	\times	\bigcirc	\times	\times	-

\bigcirc : Possible, \times : Impossible
9-1. Analog output

When the this unit power supply is turned on with external HOLD signal short-circuited, the analog output is as follows. When the analog output is assumed to be holding target with $\mathrm{F}-10$, the analog output outputs the minimum value.

- Please note the following points when you use the CHECK function. There is a thing which becomes "OL" error display (The analog output is made at OVR . output) by making CHECK effective.
- This unit has two kinds of analog outputs, that is, "Voltage output" and "Current output".

This analog output executes rewriting the output synchronizing with the A / D sampling.

The resolution of this analog output is approx. 1/12 000 against 0 V to 10 V of the voltage output and 4 mA to 20 mA of the current output.

The analog output has the output fluctuation element when the power is turned on. To use this instrument with stable condition, use it about one hour after the power is turned on.

F-20	Selection of analog output target	Gross weight or Net weight
F-21	Display value at the minimum analog output value	Display value at the output of approx.4 mA or 0 V
F-22	Display value at the maximum analog output value	Display value at the output of approx. 20 mA or 10 V.

9-1-2. Specification of current output
Parts No. CSD891B-P07
(1) Output Output : DC4 mA to 20 mA

Over range : Approx. 2.4 mA at the display of "- OL" Approx 21.6 mA at the display of "OL"
(2) Load resistance $: 510 \Omega$ or less
(3) Non-linearity $\quad: 0.05 \%$ F.S.
(4) Resolution : Approx.1/12 000
(5) Output rate : Synchronized with the A/D sampling.
$9-1-3$. Specification of voltage output
Parts No. CSD891B-P25
(1) Output Output : DC0 V to 10 V

Over range : Approx. -1 V at "- OL" display Approx. 11 V at "OL" display
(2) Load resistance $\quad: 5 \mathrm{k} \Omega$ or more
(3) Non-linearity $\quad: 0.05 \%$ F.S.
(4) Resolution : Approx.1/12 000
(5) Output rate : Synchronized with the A/D sampling
$9-1-4$. Connection of the current output
The connection with the current output should be made as follows

! ! Warning
The connections with the current output should be made securely according to the figures and also within the specification of the load resistance. If neglected, it may cause an unexpected failure.

- The connection with the current output should be applied with the shielded cable, and the shield should be connected to the θ terminal (Terminal No.27) of this instrument. If neglected, it may cause an unexpected malfunction due to the effects from the external noises and so on.
$9-1-5$. Connection with the voltage output
The connection with the voltage output should be made as follows.

! ! Warning
The connections with the voltage output should be made securely according to the figures and also within the specification of the load resistance. If neglected, it may cause an unexpected failure.
- The connection with the voltage output should be applied with the shielded cable, and the shield should be connected to the \oplus terminal (Terminal No.27) of this instrument. If neglected, it may cause an unexpected malfunction due to the effects from the external noises and so on.

The analog output for standard specifications is set between the minimum value and the maximum value with the output of 0 to 2000 .
By changing the $\mathrm{F}-21$ and $\mathrm{F}-22$, optional value can be decided.

$\mathrm{F}-21$ sets the display when the minimum value is desired to output.
$\mathrm{F}-20$ sets the display when the maximum value is desired to output.
例) F-21: Set as 1000
F-22: Set as 5000
When the display is 5000 , the maximum value outputs.
When the display is 1000 , the minimum value outputs.

【 Warning Take care that the setting on the $\mathrm{F}-22$ doesn't exceed the maximum display value that has set in the Chapter 5.

- For the $\mathrm{F}-21$, less value than the value to set for $\mathrm{F}-22$ should be set.

If neglected, the correct output can't be obtained.

Fine adjustment described here, is the one to arrange each "the minimum value" and "the maximum value" without applying the actual load during the procedures. Refer to the paragraph $9-1-8$, for the fine adjustment with actual load applied.

During the application on fine adjustment, if you want to suspend, press the $\xlongequal{\text { Checen }}$ Func. key. The minimum value data, the maximum value data are kept as they were before entering the fine adjustment, and the Measurement mode can be re-entered.

- Make fine adjustment one (1) hour or so after feeding the power. You can make fine adjustment with safer conditions.

	Procedures	
1	The load display shows "FUNC".	
2	Press the $\frac{5 *}{4}$ key 9 times. The load display changes as "FUNC" \rightarrow "CCAL" \rightarrow "ACAL" \rightarrow "LCAL" \rightarrow "ZERO" \rightarrow "SPAN" \rightarrow "TARE" \rightarrow "CHEK" \rightarrow "MONT" \rightarrow "VCAL".	

	Procedures	
3	Press the $\xlongequal[\text { SHITITI }]{\text { EMIER }}$ key. The load display shows "ALOW".	
4	Press the $\stackrel{\text { SHITIT }}{\text { EnNER }}$ key. The load display flashes on and off showing "ALOW". At the same time, the analog output equivalent to the minimum value of analog output is obtained. Adjust so the output will become the minimum value with the right keys. By pressing the key continuously, increment can be provided continuously	key : Decrease the analog output key : Increase the analog output
5	Fine adjustment on the maximum value of analog output Press the $\xlongequal{\text { SHATITE }}$ key. The display section shows as "A_HI".	

	Procedures	
6	Press the $\stackrel{\text { SHITFI }}{\text { ENITER }}$ key. The load display flashes on and off showing "A_HI". At the same time, the analog output equivalent to the maximum value of analog output is obtained. Adjust so the output will become the maximum value with the right keys. By pressing the key continuously, increment can be provided continuously	key : Decrease the analog output key : Increase the analog output
7	 The load display will show "END". Measurement mode can be returned through the VCAL mode, then the present load will be shown. At this moment, the result of fine adjustment on the minimum/maximum output of analog output can be renewed.	

$9-1-8$. Fine adjustment 2 on analog output
The fine adjustment explained in this paragraph is the procedures with applying the actual weight.

- Before making the fine adjustment, be sure to make scaling for the analog output by referring to the paragraph $9-1-6$.
If neglected, deviation of output can't be adjusted during the fine adjustment.

During the application on fine adjustment, if you want to suspend the fine adjustment, press the $\begin{gathered}\text { chinew } \\ \text { func. } \\ \text {. } \\ \text { key }\end{gathered}$. The zero data and the span data are kept as they were before entering the fine adjustment, and the Measurement mode can be re-entered.

- Make fine adjustment in one (1) hour or so after feeding the power. You can make fine adjustment with safer conditions.

	Procedures	
1	Press the \square key for one second. The load display shows "FUNC".	
2	Press the \square key 10 times. The load display will change as "FUNC" $\begin{aligned} & \rightarrow \text { "CCAL" } \rightarrow \text { "ACAL" } \rightarrow \text { "LCAL" } \rightarrow \text { "ZERO" } \\ & \rightarrow \text { "SPAN" } \rightarrow \text { "TARE" } \\ & \rightarrow \text { "VCAL" } \rightarrow \text { "VADJ". } \end{aligned}$	

	Procedures	
3	Press the The load display will show "ALOW". At the same time, set the weight equivalent to the minimum output value of the analog output.	
4	Press the The load display flashes on and off showing the present load value. At the same time, adjust the deviation with the right keys so the analog output will meet with the actual weight. By pressing the key continuously, increment can be provided continuously.	key : Decrease the analog output key : Increase the analog output
5	Fine adjustment on the maximum value of analog output Press the The load display shows "A_HI". At the same time, set the weight equivalent to the maximum output value of the analog output.	

	Procedures	
6	 The load display shows the current load value and flashes on and off. At the same time, adjust the deviation of analog output against the load with the right keys. By pressing the key continuously, increment can be provided continuously.	key : Decrease the analog output key : Increase the analog output
7	Press the $\xlongequal{\text { SHIfTIT }}$ key. The load display shows "END". By pressing the $\frac{\text { SHIFITER }}{\text { ENIER }}$ key again, the Measurement mode can be returned through the VADJ mode, then the present load will be shown. At this moment, the result of fine adjustment on the minimum/maximum output of analog output can be renewed.	

When power is ON for the instrument with the external HOLD signal shorted, the BCD output will be as follows:
(1) Even when the Display is targeted for the HOLD with the $\mathrm{F}-10$, BCD outputs " 00000 " if the target for BCD output is set as Display.
(2) When the BCD output is assumed to be the target of HOLD with the $\mathrm{F}-10$, BCD output outputs " 00000 ".
(3) Other than the case above (1) and (2), the present load value will output after " 00000 " has output.

- In other than the Measurement mode, the BCD output will not be renewed. In due course, the "ERROR" for the BCD output won't be ON in other than the mode of the Measurement mode, so care should be taken fully.
- When the CHECK switch is applied, pay attention to the following point. By the ON operation of CHECK, the "OL" error display (BCD output is OVR.) might be shown.
$9-2-1$. Related function

F-40	Setting the target of BCD output	Changeover of Gross weight, Net weight or External input
F-41	Setting output logic for BCD data	Negative logic, Positive logic
F-42	Setting output logic for BCD polarity	Negative logic, Positive logic
F-43	Setting output logic for BCD flag	Negative logic, Positive logic
F-44	Setting output logic for BCD P.C.	Negative logic, Positive logic
F-45	Setting the width of BCD P.C.	$2.5 \mathrm{~ms}, 5 \mathrm{~ms}, 10 \mathrm{~ms}, 25 \mathrm{~ms}, 125 \mathrm{~ms}$
F-45	Setting the BCD output rate	4 times/s, 20 times $/ \mathrm{s}, 50$ times $/ \mathrm{s} 100$ times/s, 200 times $/ \mathrm{s}$

9-2-2. Specifications for BCD output
(1) Output logic

Relative function Negative logic, Positive logic can be changeable by the related functions $\mathrm{F}-41, \mathrm{~F}-42, \mathrm{~F}-43$ and $\mathrm{F}-44$.
(2) Output data

BCD $\quad 5$ digits parallel output
POL. (Polarity) ON at minus, and output OFF at plus.
P.C.(Print command)

ERROR
OVR. (Over)
(3) Input data ZERO

A/Z
A/Z OFF
HOLD
LOCK
BCD-ENABLE

SEL.1, SEL. 2

Same as $\xlongequal{\frac{\text { ZERO }}{\Delta}}$ key
Same as A/Z key

Same as | A/Z |
| :---: |
| OF |
| key |

HOLD the target selected by function $\mathrm{F}-10$
Lock (prohibit) all key input
Compulsive OFF for the related output with BCD
(High-impedance)
Selection of BCD output target.
Effective when BCD output target is changeover of the external input (Setting of F-40:00002)

SEL.1	SEL.2	Output target
Open	Open	Gross weight
Short	Open	Part of A/Z cancel
Open	Short	Net weight
Short	Short	Gross weight

(4) Output target
(5) Output times

Change of Gross weight, Net weight and Change of external input can be available with the related function $\mathrm{F}-40$.

Changeable to 4 times/s, 20 times/s, 50 times/s or 100 times/s by relative function $\mathrm{F}-46$
$9-2-3$. Pin configurations for the BCD output connector

1	COM.	13	8×10^{2}	25	ERROR
2	1×10^{0}	14	1×10^{3}	26	P.C.
3	2×10^{0}	15	2×10^{3}	27	HOLD
4	4×10^{0}	16	4×10^{3}	28	LOCK
5	8×10^{0}	17	8×10^{3}	29	SEL.1
6	1×10^{1}	18	1×10^{4}	30	SEL. 2
7	2×10^{1}	19	COM.	31	ZERO
8	4×10^{1}	20	2×10^{4}	32	A/Z
9	8×10^{1}	21	4×10^{4}	33	A/Z OFF
10	1×10^{2}	22	8×10^{4}	34	N.C.
11	2×10^{2}	23	POL.	35	BCD-ENABLE
12	4×10^{2}	24	OVR.	36	N.C.

Suitable plug : 57-30360 made by DDK

Never connects with the N.C. pins.

Never connects with the N.C. pins.
An internal circuit and photocoupler are insulated.

9-2-4. Equivalent circuit for input/output
(1) Equivalent circuit for input

(2) Equivalent circuit for output

In case of reading each output data of the BCD output through the sequencer and so on, read them at the timing of "The edge from ON to OFF" for the P.C. (Print command). Moreover, read the "Input response delay time" for the reading instrument such as a sequencer and so on, with full considerations. If neglected, there may have the possibility that correct reading of data won't be obtained.
(1) Normal

> 200 times/s : Approx. 5 ms
> 100 times/s : Approx. 10 ms
> 50 times/s $:$ Approx. 20 ms
> 20 times/s $:$ Approx .50 ms
> 4 times $/ \mathrm{s}:$ Approx .250 ms

At the time of data output of each P.C., DATA and POL., output transistor will become ON(Negative logic electrically).
(2) When the data is over-ranged

DATA
POL.

OVR.

At the time of OVR output, output transistor will at the OVR signal will become ON(Negative logic electrically). Moreover, for all of the DATA, output transistor will become OFF (Positive logic electrically) at the time of OVR output. (However, for the POL., normal OFF at the "OL", and normal ON at the " - OL".
(3) When ERROR is occurred

- At the time of ERROR output, output transistor at ERROR signal will become ON(Negative logic electrically). Moreover, for each DATA, POL., all of the output transistor will become OFF at the time of ERROR output(Positive logic electrically).
(4) When the HOLD signal is input

At the time of HOLD signal input, output transistor for the P.C. will be OFF condition. (Positive logic electrically.)

After inputting the HOLD signal, it takes the following response times to freeze the DATA, POL or cancellation of HOLD is executed.

At 200 times/s : Approx. 5 ms at maximum + Input response time At 100 times/s : Approx. 10 ms at maximum + Input response time At 50 times/s : Approx. 20 ms at maximum + Input response time At 20 times/s : Approx. 50 ms at maximum + Input response time At 4 times/s : Approx. 250 ms at maximum + Input response time

9-2-6. Output condition

Setting output logic	Output data	Condition of transistor	Pin-COM level at the time of voltage supply externally.
Negative logic	Yes	ON	L
	No	OFF	H
Positive logic	Nes	OFF	H
	No	ON	L

9-2-7. Selection of output logic for P.C.(Print command), and of its width
Selection of the P.C. logic for BCD output, and its width can be made by setting function. (Related function : F-44, F-45)

Select the P.C. width to meet with the output rate set by $\mathrm{F}-46$, and execute the suitable selection according to the following list.

Output rate(F-46)	PC. width				
	Approx. 125 ms	Approx.25 ms	Approx. 10 ms	Approx.5 ms	Approx.2.5 ms
4 times/s	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
20 times $/ \mathrm{s}$	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc
50 times $/ \mathrm{s}$	\times	\times	\bigcirc	\bigcirc	\bigcirc
100 times $/ \mathrm{s}$	\times	\times	\times	\bigcirc	\bigcirc
200 times $/ \mathrm{s}$	\times	\times	\times	\times	\bigcirc

\bigcirc : Possible to use, \times : Impossible to use.(P.C. output doesn't operate correctly.)

Warning
The selection of P.C. width should be made adequately according to the output times set with the F-46. If neglected, the P.C. output will not operate correctly.
A. Warning In Calibration mode, Fine adjustment, Check mode and Setting mode,
the Error command will be sent against the command from the Host.
When the CHECK switch is applied, pay attention to the following
points.
(1) By ON operation of the CHECK, the instrument isn't in the
Measurement mode anymore, however RS-232C interface
responses to the command from the host.
(2) By ON operation of the CHECK, "OL" error display might be
shown. At this time, when reading command for load is executed,
the "OL" will be transferred to the host.

9-3-1. Related function

F-50	Setting the operation mode	Stream mode or Command mode
F-51	Setting the output target at the time of stream mode	Gross weight, Net weight or display interlock
F-52	Setting the baud rate	$1200,2400,4800,9600,19200$ or 38400 bps
F-53	 parity	Parity bitDon, Even parity or Odd parity Data length $: 7$ bit or 8 bit F-54 Setting the stop bit
F-55	Setting the terminator	CR or CR 2 bit
F-56		

Setting of this function makes the setting activated immediately after setting.

9-3-2. Specifications for interface
(1) Method Corresponds to RS-232C
(2) Communication methodHalf duplex
(3) Specifications for signal

Baud rate
$1200,2400,4800,9600,19200$ or 38400 bps
Data length $\quad 7$ bit or 8 bit
Parity bit
Stop bit
Terminator
Synchronous method
Transmission data
(4) Cable length Within 15 m
(5) Input/Output monitor with LED(Placed on the optional P.C. board)

There are two kinds of data transfers in the instrument, that is, stream mode and command mode.
(1) Stream mode

The latest targeted data targeted/selected with the F-51 keep on outputting. However, output times will change depending on the setting of display times and baud rate.
(2) Command mode

By sending the determined command/data from the host (Personal computer, sequencer and so on) to the CSD-891B, the data will be send back to the host side from the CSD-891B corresponding to the command/data.
Be sure to execute communication according to the below procedures.

- The communication operation can be made in all of the modes. However, in the Calibration mode, Fine adjustment mode, Check mode and Monitor mode, the Error command will be sent.
- The flow control is not executed in the CSD-891B.

The CTS/RTS signal isn't applied.

- The X flow control isn't performed.

The operating communication is a conversational dialogue type.

9-3-4. Pin configurations for connector pin
(1) Pin configuration

Pin number	Signal name
1	CD
2	TXD
3	RXD
4	N.C.
5	S.G.
6	N.C.
7	RTS
8	CTS
9	N.C.

Suitable plug : DE $-9 \mathrm{~S}-\mathrm{NR}$ by JAE or equivalent. ※Not attached.

- The screws for the fixing base of plug at the connector of RS-232C interface is inch type thread.
- An internal circuit and photocoupler are insulated.
(2) Example of connection at the RS-232C interface
(1) Example 1

$$
\text { CSD-891B } \quad \text { Host(25 pins) }
$$

1	CD
2	TXD
3	RXD
4	N.C.
5	S.G.
6	N.C.
7	RTS
8	CTS
9	N.C.

(2) Example 2

CSD-891B		Host(9 pins)	
1	CD	1	DCD
2	TXD	2	RXD
3	RXD	3	TXD
4	N. C.	4	DTR
5	S. G	5	S. G
6	N. C.	6	DSR
7	RTS	7	RTS
8	CTS	8	CTS
9	N. C.	9	RI

9-3-5. Data format

(1) Stream mode

- The setting with the $\mathrm{F}-55$ can be entered to the terminator.
- Load weighing data enters from the right end.
- When the data is minus, " - " sign, and when plus, " + " sign is added.
- Load weighing data performs zero suppress.
- In case that the decimal point is set with the $\mathrm{F}-56$, and at the same time the decimal point is specified with the $\mathrm{F}-01$, it will be added to the specified position.
- The message is output at the time of overloaded.
- The empty sections are all spaces.

(2) Command mode
(1) Reading out the load data(Host \rightarrow CSD -891 B)

Return(CSD-891B \rightarrow Host)

- The load data enters from the right end.
- When the data is minus, " - " sign and when plus, " + " sign is added.
- Load weighing data performs zero suppress.
- In case that the decimal point is set with the $\mathrm{F}-56$, and at the same time the decimal point is specified with the $\mathrm{F}-01$, it will be added to the specified position.
- The message will be output at the time of overloaded.
- The empty sections are all spaces.

(2) Reading out comparative data (Host \rightarrow CSD -891 B)

Command No.	Operation
30	Reading out S0 data
31	Reading out S1 data
32	Reading out S2 data
33	Reading out S3 data
34	Reading out S4 data

Return(CSD-891B \rightarrow Host)

- The load data enters from the right end.
- When the data is minus, " - " sign and when plus, "+ " sign is added.
- The sign data performs zero suppress.
- In case that the decimal point is set with the $F-56$, and at the same time the decimal point is specified with the $\mathrm{F}-01$, it will be added to the specified position.
- The empty sections are all spaces.
(3) Reading-out the condition (Host \rightarrow CSD-891B)

Command No.	Operation
40	Reading out the condition

Return(CSD-891B \rightarrow Host)

a : RUN LED display " 1 " = ON, " 0 " = OFF
$\mathrm{b}: \mathrm{A} / \mathrm{Z} \quad$ LED display $" 1 "=\mathrm{ON}, " 0 "=\mathrm{OFF}$
c : LOCK LED display " 1 " = ON, " 0 " = OFF
d : HOLD LED display " 1 " = ON, " 0 " = OFF
e : CHECK LED display " 1 " = ON, " 0 " = OFF
(4) Reading out the comparative results (Host \rightarrow CSD-891B)

Command No.	Operation
41	Reading out comparative result

Command No.
Return(CSD-891B \rightarrow Host)

S0 : "1" = ON, "0" = OFF
S1: "1" = ON, "0" = OFF
S2: "1" = ON, "0" = OFF
S3: "1" = ON, "0" = OFF
S4: "1" = ON, "0" = OFF
(5) Change of condition (Host \rightarrow CSD-891B)

Command No.	Operation
50	Zero set
51	A/Z
52	A/Z OFF

Return $(\mathrm{CSD}-891 \mathrm{~B} \rightarrow$ Host $)$

(6) Writing comparative data($\mathrm{Host} \rightarrow \mathrm{CSD}-891 \mathrm{~B}$)

Command No.	Operation
60	Writing S0 data
61	Writing S1 data
62	Writing S2 data
63	Writing S3 data
64	Writing S4 data

Return(CSD-891B \rightarrow Host)

- The set value enters from the right end.
- Setting range is from - 99000 to 99999 .
- Never add the decimal point.
(7) Writing the function data(Host \rightarrow CSD -891 B)

Function No.	Operation	Setting value
04	Setting of digital filter (Contents of F-04) Setting range $:=00000 \sim 00006$	$00000 \sim 00006$
05	Setting of analog filter (Contents of F-05) Setting range : $=00000 \sim 00004$	$00000 \sim 00004$
08	Setting of data width for zero tracking (Contents of F-08) $00000=$ Zero tracking OFF Setting time : 00000~00099 Unit : 0.5D Data width of 49.5 D at the setting of "00099" ※Effective only when 00001~00099 by F-09 is set.	$00000 \sim 00099$

Function No.	Operation	Set value
09	Setting of time width for zero tracking (Contents of $\mathrm{F}-09$) $00000=$ Zero tracking OFF Setting range : 00000~00099 Unit: 0.1 s	00000~00099
15	Setting of the digital filter for the stabilized filter (Contents of $\mathrm{F}-15$) 00000 = Stabilized filter OFF Setting range : 00000~00006 ※Strength of the digital filter for the stabilization filter is selected. If the figure grows, the influence such as the vibrations will not appears easily on the display because the filter comes strongly. ※Effective only when 00001 to 00999 is set with $\mathrm{F}-16$ and 00001 to 00999 is set with $\mathrm{F}-17$.	00000~00006
16	Setting of the time width for the stabilized filter (Contents of $\mathrm{F}-16$) $00000=$ Stabilized filter OFF Setting range : 00000~00999 Unit: 0.01 s Time width : 9.99s at the setting of "00999" ※Effective only when 00001 to 00006 is set with $\mathrm{F}-15$ and 00001 to 00999 is set with $\mathrm{F}-17$.	00000~00999
17	Setting of the data width for the stabilized filter (Contents of $\mathrm{F}-17$) $00000=$ Stabilized filter OFF Setting range : 00000~00999 Unit: 1D Data width : 999D at the setting of "00999" ※Effective only when 00001 to 00006 is set with $\mathrm{F}-15$ and 00001 to 00999 is set with $\mathrm{F}-16$.	00000~00999
20	Setting of the target for the analog output (Contents of F-20) 00000 : Gross weight 00001 : Net weight	00000~00001
21	Display value at the minimum value for analog output (Contents of $\mathrm{F}-21$) Setting range : - 99999 to 99999 Unit : 1 count	-99999~99999
22	Display value at the maximum value for analog output (Contents of $\mathrm{F}-22$) Setting range : - 99999 to 99999 Unit : 1 count	-99999~99999
35	Setting of the data width for the comparator hysteresis (Contents of F-35) $00000=$ Hysteresis data width OFF Setting range : 00000~00099 Unit: 1D Data width : 99D at the setting of "00099"	00000~00099
36	Setting the time width for comparator hysteresis (Contents of F-36) $00000=$ Hysteresis time width OFF Setting range : 00000~00999 Unit: 0.01 s Data width : 9.99 s at the setting of "00999"	00000~00999

Return(CSD-891B \rightarrow Host)

- The set value enters from the right end.
- Setting range is from -99 000 to 99999.
- Never add the decimal point.
(8) Reading out the function data(Host \rightarrow CSD-891B)

Function No.	Operation
01	Reading out the setting value for the display position of decimal point (Contents of F-01)
02	Reading out the setting value of A/D damping rate(Contents of F-02)
03	Reading out the setting value of display rate (Contents of F-03)
04	Reading out the setting value of digital filter (Contents of F-04)
05	Reading out the setting value of analog filter (Contents of $\mathrm{F}-05$)
06	Reading out the setting value of key lock (Contents of $\mathrm{F}-06$)
08	Reading out the setting value of data width for zero tracking (Contents of $\mathrm{F}-08$)
09	Reading out the setting value of time width for zero tracking (Contents of $\mathrm{F}-09$)
10	Reading out the setting value of HOLD target (Contents of F-10)
11	Reading out the setting value of CHECK value (Contents of F-11)
12	Reading out the setting value of Bridge power supply voltage (Contents of F-12)
15	Reading out the setting value of digital filter for stabilized filter (Contents of F-15)
16	Reading out the setting value of time width for stabilized filter (Contents of F -16)
17	Reading out the setting value of data width for stabilized filter (Contents of $\mathrm{F}-17$)
20	Reading out the setting value of analog output target (Contents of F-20)
21	Reading out the setting value of the display value at the minimum value of analog output (Contents of F-21)
22	Reading out the setting value of the display value at the maximum value of analog output (Contents of F-22)
30	Reading out the setting value of comparator operation (Contents of $\mathrm{F}-30$)
31	Reading out the setting value of comparator target (Contents of F-31)
32	Reading out the setting value of comparator direction (Contents of F-32)
33	Reading out the setting value of the application status for comparator S0 (Contents of F-33
34	Reading out the setting value of the application status for comparator hysteresis (Contents of F-34)
35	Reading out the setting value of the application status for comparator hysteresis (Contents of F-35)
36	Reading out the setting value of the time width of comparator hysteresis (Contents of F-36)
40	Reading out the setting value of the BCD output target (Contents of F-40)
41	Reading out the setting value of the BCD output logic (Contents of F-41)
42	Reading out the setting value of the BCD polarity output logic (Contents of F-42)
43	Reading out the setting value of the BCD flag output logic (Contents of F-43)

Function No.	Operation
44	Reading out the setting value of the BCD P.C. output logic (Contents of F-44)
45	Reading out the setting value of BCD P.C. width (Contents of F-45)
46	Reading out the setting value of BCD output times (Contents of F-46)
50	Reading out the setting value of RS-232C operation mode (Contents of $\mathrm{F}-50$)
51	Reading out the setting value of RS-232C stream mode (Contents of $\mathrm{F}-51$)
52	Reading out the setting value of RS-232C/422/485 baud rate (Contents of F-52)
53	Reading out the setting value of RS-232C/422/485 data bit length (Contents of F-53)
54	Reading out the setting value of RS-232C/422/485 stop bit (Contents of $\mathrm{F}-54$)
55	Reading out the setting value of RS-232C/422/485 terminator (Contents of F-55)
56	Reading out the setting value of the decimal point of $\mathrm{RS}-232 \mathrm{C} / 422 / 485$ transmission code (Contents of $\mathrm{F}-56$)
57	Reading out the setting value of ID number for RS-422/485 (Contents of F-57)
58	Reading out the setting value of RS-422/485 changeover (Contents of F-58)
59	Reading out the setting value of the delay times for RS-485 transmission (Contents of F-59)
65	Reading out the detection of stability range (Contents of F-65)
66	Reading out the detection of stability time (Contents of F-66)
72	Reading out the setting value of the effective time for external control input (Contents of $\mathrm{F}-37$)
90	Reading out the increment value (for reference) (Contents of F-90)
91	Reading out the maximum display value (for reference) (Contents of F-91)
92	Reading out the actual load value (for reference) (Contents of F-92)
93	Reading out the zero calibration value (for reference) (Contents of F-93)
94	Reading out the span calibration value (for reference) (Contents of $\mathrm{F}-94$)
97	Reading out the setting value of prohibiting calibration (Contents of $\mathrm{F}-97$)

Return(CSD-891B \rightarrow Host)

(3) Calibration Command mode
(1) Start of calibration mode(Host \rightarrow CSD - 891B)

2		4		6		Command	Operation
@	0	0	0	1	Ter min nat or	01	Calibration to register the output
					Command No.		strain gage applied transducer at the maximum display after setting the load to zero
						02	Calibration to register the output of strain gage applied transducer at zero and the maximum display
						03	Calibration to register read the output of strain gage applied transducer read after setting the load to zero or actual load.
						04	Zero fine adjustment

05	Span fine adjustment
06	Calibration to register only zero point again

Return(CSD-891B \rightarrow Host)
a : When @0001+Terminator is transmitted.

2			4		6	8	10		12	14	
@	0	0	0	1			C	C	A	L	Ter min nat or

b : When@0002+Terminator is transmitted.

c : When@0003+Terminator is transmitted.

d : When @0004 + Terminator is transmitted.

2	4	10	6	10	12								
$@$	0	0	0	4					Z	E	R	0	Ter mi nat or

$\mathrm{e}:$ When @0005+Terminator is transmitted.

$\mathrm{f}:$ When@0006+Terminator is transmitted.

- The empty sections are all spaces.
(2) Registration of the minimum digits (Host \rightarrow CSD-891B)

Return(CSD-891B \rightarrow Host)

- Data of the minimum digits enters from the right end.
- The empty sections are all spaces.
(3) Registration of the maximum display value (Host \rightarrow CSD-891B)

Return(CSD-891B \rightarrow Host)
a : In normal termination

b : Set in error

- The maximum display value enters from the right end.
- Never add the decimal point.
- The maximum display value is the amount of the minimum digits.
- The empty sections are all spaces.
(4) Register with the actual load value (Host \rightarrow CSD-891B)

Return(CSD-891B \rightarrow Host)

- The actual load value enters from the right end.
- Never add the decimal point.
- The actual load value is the amount of the minimum digits.
- Then empty sections are all spaces.
(5) Registration of zero point (Host \rightarrow CSD-891B)

Return(CSD-891B \rightarrow Host)

- Then empty sections are all spaces.
(6) Registration of zero mV / V value (Host $\rightarrow \mathrm{CSD}-891 \mathrm{~B}$)

2			4		6	8		10		12		14
@	0	0	1	4			0	0	0	0	0	Ter min nat or
Command No. \qquad Sign\qquad Zero mV/V value												

Return(CSD-891B \rightarrow Host)

- Data of zero mV / V value enters up to the fourth place below decimal point (X.XXXX). (Ex : "01000" as $0.1000 \mathrm{mV} / \mathrm{V} "$.)
- Never add the decimal point.
- When the data is minus, " - " sign and when plus, "+ " sign is added.
- The empty sections are all spaces.
(7) Registration of span mV / V value (Host $\rightarrow \mathrm{CSD}-891 \mathrm{~B}$)

Return(CSD-891B \rightarrow Host)

- Data of span mV / V value enters up to the fourth place below decimal point (X.XXXX). (Ex : "02000" as $0.2000 \mathrm{mV} / \mathrm{V} "$.)
- Never add the decimal point.
- When the data is minus, " - " sign and when plus, "+ " sign is added.
- The empty sections are all spaces.
(8) Registration of span (Host \rightarrow CSD-891B)

Return(CSD-891B \rightarrow Host)

- The empty sections are all spaces.
(9) Command for zero fine adjustment (Host \rightarrow CSD-891B)

Return(CSD-891B \rightarrow Host)
$\mathrm{a}:$ In normal termination

b : Set in error

- Data of the fine adjustment enters from the right end.
- Never add the decimal point.
- The actual load value is the amount of the minimum digits.
- Then empty sections are all spaces.
(10) Command for span fine adjustment (Host \rightarrow CSD-891B)

a : In normal termination

b: Set in error

- Data of the fine adjustment enters from the right end.
- Never add the decimal point.
- The actual load value is the amount of the minimum digits.
- Then empty sections are all spaces.
(11) Command for finish of calibration (Host \rightarrow CSD-891B)

Command No.
(12) Command for reading out the calibration status (Host \rightarrow CSD -891 B)

Return(CSD-891B \rightarrow Host)
$\mathrm{a}:$ In normal termination

Command No.
b : In the calibration

Command No.
c : In error input

$@$	0	0	0	9				S	P	-	L		Ter mi nat or

2		4			6	8		10		12	14
@	0	0	0	9			S	P	-	H	Ter min nat or

(13) Termination command of calibration mode (Host \rightarrow CSD-891B)

Command No.
Return(CSD-891B \rightarrow Host)

2	4												

Command No.

- Then empty sections are all spaces.

The instrument returns the error command to the host side at the time of Communication error or Execution error.

Error Command No.	Contents	Remarks
01	Error of impossible condition of execution	In the case of Function mode, Calibration mode, Fine adjustment mode and Setting mode.
02	Another error caused from the instrument	In the case of impossible to execute the receiving command.
10	Parity error	In the case of detecting the parity error.
11	Framing error	In case of detecting error for stop bit.
12	Overrun error	In the case of reading error for receiving command.
13	Error of data code, data length error	The receiving data code and data length are not the same.
14	No applicable command	The receiving command isn't the same.

O In case that the Completion code (terminator) is not detected, the error code will not be returned.

- In case that the communication error command is returned from the instrument, consider its remedy at the host side.
- The error code will be sent against the command from the host during Calibration mode, Fine adjustment mode, Check mode and Monitor mode.

When CHECK switch is ON status, take care of the following points.
(1) When CHECK switch will be ON status, the instrument will be out of the Measurement mode, but RS-422/485 interface will make response to the command from the Host.
(2) By ON operation of CHECK, there may be a case that display will show as "OL" error. At the same time, executing the reading command for load makes the "OL" transmitted to the Host.

- The sending terminal is low impedance for 1 ms after finishing sending in the instrument. Therefore, to prevent from competing with other instruments, apply the sending wire (SDA, SDB) at the intervals of 1 ms or more.

9-4-1. Related functions

F-52	Setting baud rates	$1200,2400,4800,9600,19200$ or 38400 bps
F-53	Setting a data bit length and a parity bit length	Parity bit : Non, Even or Odd parity Data length : 7 bit or 8 bit
F-54	Setting a stop bit	1 bit or 2 bit
F-55	Setting the terminator	CR or CR+LF
F-56	Setting the decimal point in transmitting code	Non, Exist
F-57	Setting the ID No.	$0 \sim 31$
F-58	Change of RS-421/485	Operation of RS -422 or operation of RS-485
F-59	Setting the delay time for sending back the RS-485	Every 1 ms $0 \sim 999 \quad 1 \mathrm{~ms}$ (unit)

The setting of this function will be effective immediately after setting the function.

- The function $\mathrm{F}-59$ will become effective at the time of operation of RS-485. After completing the transmission at the host side by the function, set the time until the transmitting terminal of the instrument becomes high impedance.

9-4-2. Specifications on interface
(1) Method

Based on RS-422/485
(2) Communication methodHalf-duplex
(3) Specifications on Signal

Baud rate
Data bit length
Parity bit
Stop bit
Terminator
Synchronous method
Communication data
Address
(4) Cable length
(5) Number of connections 32 sets at maximum ($\mathrm{RS}-422: 10$ sets
(6) Termination

Built-in
(Yes/No can be selectable by the connection of terminal boards.)
(7) Change of RS-422/485 Setting by the function.
(8) Input/output monitor With LED
(The layout is shown on the P.C. board at rear side of terminal board.)
9-4-3. Procedure of data transmission
By sending the determined command/data from the host (personal computer, sequencer and so on) to the CSD-815, data will be sent back to the host side form the CSD-891B corresponding to the command/data.

Be sure to execute communication according to the below procedures.

Host \rightarrow CSD-891B

CSD $-891 \mathrm{~B} \rightarrow$ Host

- The communication operation can be made in all of the modes. However, in the Calibration mode, Fine adjustment mode, Check mode and Monitor mode, the Error command will be sent.
- The flow control is not executed in the CSD-891B.
- The CTS/RTS signal isn't applied.
- The X flow control isn't performed.

The operating communication is a conversational dialogue type.
9-4-4. Pin configurations for connector pin
(1) Pin configuration

SDA	Differential output $(+)$
SDB	Differential output $(-)$
RDA	Differential input $(+)$
RDB	Differential input $(-)$
TRM.	Terminator
S.G.	Signal ground

- The TRM. is a terminal resistance. Connect the terminal resistance by shorting between the TRM. and RDM. at the last end of the host looking from the host(personal computer, sequencer and so on).
- For the connection, we recommend to apply twisted pair wires.
- An internal circuit and photocoupler are insulated.
(2) Example of connection
(1) 1 to 1

RS-422

(2) 1 to n

RS-422

RS-485

Connect the terminal resistance at the $\mathbb{m}_{\text {section. }}$

9-4-5. Data format

(1) Command mode
(1) Reading out the load data(Host \rightarrow CSD-891B)

Command No.	Operation
20	Reading out the display interlocked data
21	Reading out Gross weight data
22	Reading out Net weight data
23	Reading out A/Z cancel data

Return(CSD-891B \rightarrow Host)

- The load data enters from the right end.
- When the data is minus, " - " sign and when plus, " + " sign is added.
- Load weighing data performs zero suppress.
- In case that the decimal point is set with the $\mathrm{F}-56$, and at the same time the decimal point is specified with the $\mathrm{F}-01$, it will be added to the specified position.
- The message will be output at the time of overloaded.
- The empty sections are all spaces.

(2) Reading out comparative data ($\mathrm{Host} \rightarrow \mathrm{CSD}-891 \mathrm{~B}$)

Command No.	Operation
30	Reading out S0 data
31	Reading out S1 data
32	Reading out S2 data
33	Reading out S3 data
34	Reading out S4 data

Return(CSD-891B \rightarrow Host)

- The load data enters from the right end.
- When the data is minus, " - " sign and when plus, "+ " sign is added.
- The sign data performs zero suppress.
- In case that the decimal point is set with the $\mathrm{F}-56$, and at the same time the decimal point is specified with the $\mathrm{F}-01$, it will be added to the specified position.
- The empty sections are all spaces.
(3) Reading-out the condition (Host \rightarrow CSD - 891B)

Command No.	Operation
40	Reading out the condition

00~31

$$
\text { Return(CSD-891B } \rightarrow \text { Host })
$$

a : RUN LED display " 1 " = ON, " 0 " = OFF
$\mathrm{b}: \mathrm{A} / \mathrm{Z} \quad$ LED display " $1 "=\mathrm{ON}, " 0 "=\mathrm{OFF}$
$\mathrm{c}:$ LOCK LED display " 1 " $=\mathrm{ON}, " 0 "=\mathrm{OFF}$
d : HOLD LED display " 1 " = ON, " 0 " = OFF
e : CHECK LED display " $1 "=\mathrm{ON}, " 0 "=\mathrm{OFF}$
(4) Reading out the comparative data(Host \rightarrow CSD-891B)

Command No.	Operation
41	Reading out comparative data

$$
\mathrm{S} 0: " 1 "=\mathrm{ON}, " 0 "=\mathrm{OFF}
$$

S1: " 1 " = ON, " $0 "=$ OFF
S2: " 1 " = ON, " 0 " = OFF
S3: " 1 " = ON, " 0 " = OFF
S4: " 1 " = ON, " 0 " = OFF
(5) Change of condition (Host \rightarrow CSD -891 B)

Command No.	Operation
50	Zero set
51	A/Z
52	A/Z OFF

Return(CSD-891B \rightarrow Host)

(6) Writing comparative data(Host \rightarrow CSD-891B)

Return(CSD-891B \rightarrow Host)

- The set value enters from the right end.
- Setting range is from -99 000 to 99999.
- Never add the decimal point.
(7) Writing the function data(Host \rightarrow CSD-891B)

Function No.	Operation	Setting value
04	$\begin{aligned} & \text { Setting of digital filter (Contents of F-04) } \\ & \text { Setting range }:=00000 \sim 00006 \end{aligned}$	00000~00006
05	$\begin{aligned} & \text { Setting of analog filter }(\text { Contents of } \mathrm{F}-05) \\ & \text { Setting range }:=00000 \sim 00004 \end{aligned}$	00000~00004
08	```Setting of data width for zero tracking (Contents of F -08) \(00000=\) Zero tracking OFF Setting time : 00000~00099 Unit: 0.5D Data width of 49.5 D at the setting of " 00099 " ※Effective only when \(00001 \sim 00099\) by \(\mathrm{F}-09\) is set.```	00000~00099
09	```Setting of time width for zero tracking (Contents of F -09) \(00000=\) Zero tracking OFF Setting range : 00000~00099 Unit: 0.1 s```	00000~00099
15	Setting of the digital filter for the stabilized filter (Contents of $\mathrm{F}-15$) $00000=$ Stabilized filter OFF Setting range : 00000~00006 ※Strength of the digital filter for the stabilization filter is selected. If the figure grows, the influence such as the vibrations will not appears easily on the display because the filter comes strongly. ※Effective only when 00001 to 00999 is set with $\mathrm{F}-16$ and 00001 to 00999 is set with $\mathrm{F}-17$.	00000~00006
16	Setting of the time width for the stabilized filter (Contents of $\mathrm{F}-16$) $00000=$ Stabilized filter OFF Setting range : 00000~00999 Unit: 0.01 s Time width : 9.99s at the setting of "00999" ※Effective only when 00001 to 00006 is set with $\mathrm{F}-15$ and 00001 to 00999 is set with $\mathrm{F}-17$.	00000~00999
17	Setting of the data width for the stabilized filter (Contents of $\mathrm{F}-17$) $00000=$ Stabilized filter OFF Setting range : 00000~00999 Unit: 1D Data width : 999D at the setting of "00999" ※Effective only when 00001 to 00006 is set with $\mathrm{F}-15$ and 00001 to 00999 is set with $\mathrm{F}-16$.	00000~00999
20	Setting of the target for the analog output (Contents of F-20) 00000 : Gross weight 00001 : Net weight	$00000 \sim 00001$
21	Display value at the minimum value for analog output (Contents of $\mathrm{F}-21$) Setting range : - 99999 to 99999 Unit : 1 count	-99999~99999

22	Display value at the maximum value for analog output (Contents of F - 22) Setting range : -99999 to 99999 Unit : 1 count	$-99999 \sim 99999$
35	Setting of the data width for the comparator hysteresis (Contents of F-35) $00000=$ Hysteresis data width OFF Setting range : 00000~00099 Unit : 1D Data width : 99D at the setting of "00099"	$00000 \sim 00099$
36	Setting the time width for comparator hysteresis (Contents of F -36) $00000=$ Hysteresis time width OFF Setting range : 00000~00999 Unit : 0.01 s Data width :9.99 s at the setting of "00999"	$000000 \sim 00999$

Return (CSD-891B \rightarrow Host)

- The set value enters from the right end.
- Setting range is from - 99000 to 99999 .
- Never add the decimal point.
(8) Reading out the function data(Host \rightarrow CSD-891B)

Function No.	Operation
01	Reading out the setting value for the display position of decimal point (Contents of $\mathrm{F}-01$)
02	Reading out the setting value of A / D damping rate(Contents of $\mathrm{F}-02$)
03	Reading out the setting value of display rate (Contents of $\mathrm{F}-03$)
04	Reading out the setting value of digital filter (Contents of $\mathrm{F}-04$)
05	Reading out the setting value of analog filter (Contents of $\mathrm{F}-05)$
06	Reading out the setting value of key lock (Contents of $\mathrm{F}-06$)
08	Reading out the setting value of data width for zero tracking (Contents of $\mathrm{F}-08$)
09	Reading out the setting value of time width for zero tracking (Contents of $\mathrm{F}-09$)
10	Reading out the setting value of HOLD target (Contents of $\mathrm{F}-10$)
11	Reading out the setting value of CHECK value (Contents of $\mathrm{F}-11$)
12	Reading out the setting value of Bridge power supply voltage (Contents of $\mathrm{F}-12$)
15	Reading out the setting value of digital filter for stabilized filter (Contents of $\mathrm{F}-15)$
16	Reading out the setting value of time width for stabilized filter (Contents of $\mathrm{F}-16$)
17	Reading out the setting value of data width for stabilized filter (Contents of $\mathrm{F}-17$)
20	Reading out the setting value of analog output target (Contents of $\mathrm{F}-20$)

21	Reading out the setting value of the display value at the minimum value of analog output (Contents of $\mathrm{F}-21$)
22	Reading out the setting value of the display value at the maximum value of analog output (Contents of F-22)
30	Reading out the setting value of comparator operation (Contents of $\mathrm{F}-30$)
31	Reading out the setting value of comparator target (Contents of $\mathrm{F}-31$)
32	Reading out the setting value of comparator direction (Contents of F-32)
33	Reading out the setting value of the application status for comparator S0 (Contents of F-33
34	Reading out the setting value of the application status for comparator hysteresis (Contents of F-34)
35	Reading out the setting value of the application status for comparator hysteresis (Contents of F-35)
36	Reading out the setting value of the time width of comparator hysteresis (Contents of F-36)
40	Reading out the setting value of the BCD output target (Contents of F-40)
41	Reading out the setting value of the BCD output logic (Contents of F-41)
42	Reading out the setting value of the BCD polarity output logic (Contents of F-42)
43	Reading out the setting value of the BCD flag output logic (Contents of F-43)
44	Reading out the setting value of the BCD P.C. output logic (Contents of F-44)
45	Reading out the setting value of BCD P.C. width (Contents of F-45)
46	Reading out the setting value of BCD output times (Contents of $\mathrm{F}-46$)
50	Reading out the setting value of RS-232C operation mode (Contents of $\mathrm{F}-50$)
51	Reading out the setting value of RS-232C stream mode (Contents of $\mathrm{F}-51$)
52	Reading out the setting value of RS-232C/422/485 baud rate (Contents of $\mathrm{F}-52$)
53	Reading out the setting value of RS-232C/422/485 data bit length (Contents of $\mathrm{F}-53$)
54	Reading out the setting value of RS-232C/422/485 stop bit (Contents of $\mathrm{F}-54$)
55	Reading out the setting value of RS-232C/422/485 terminator (Contents of F-55)
56	Reading out the setting value of the decimal point of $\mathrm{RS}-232 \mathrm{C} / 422 / 485$ transmission code (Contents of F-56)
57	Reading out the setting value of ID number for RS-422/485 (Contents of F-57)
58	Reading out the setting value of RS-422/485 changeover (Contents of F-58)
59	Reading out the setting value of the delay times for RS-485 transmission (Contents of F-59)
65	Reading out the detection of stability range (Contents of F-65)
66	Reading out the detection of stability time (Contents of F-66)
72	Reading out the setting value of the effective time for external control input (Contents of F-37)
90	Reading out the increment value (for reference) (Contents of $\mathrm{F}-90$)
91	Reading out the maximum display value (for reference) (Contents of F-91)
92	Reading out the actual load value (for reference) (Contents of $\mathrm{F}-92$)
93	Reading out the zero calibration value (for reference) (Contents of $\mathrm{F}-93$)
94	Reading out the span calibration value (for reference) (Contents of $\mathrm{F}-94$)
97	Reading out the setting value of prohibiting calibration (Contents of $\mathrm{F}-97$)

$$
\text { Return(CSD-891B } \rightarrow \text { Host) }
$$

- The sign data perform zero suppress.
(2) Calibration Command mode
(1) Start of calibration mode(Host \rightarrow CSD $-891 \mathrm{~B})$

Return(CSD-891B \rightarrow Host)
a : When @0001 + Terminator is transmitted.

ID No. \perp
$00 \sim 31$
b : When @0002 + Terminator is transmitted.

$00 \sim 31$
c : When @0003 + Terminator is transmitted

ID No. \perp
00~31
d : When @ $0004+$ Terminator is transmitted.
e : When @0005 + Terminator is transmitted.
f : When @ $0006+$ Terminator is transmitted.

2		4		6		8	10		12	14	
@	0	0	0	4			Z	E	R	0	Ter min nat or

ID No.
00~31

ID No. \perp
00~31
 $00 \sim 31$

- The empty sections are all spaces.
(2) Registration of the minimum digits (Host \rightarrow CSD-891B)
 $00 \sim 31$

Return (CSD-891B \rightarrow Host)

- Data of the minimum digits enters from the right end.
- The empty sections are all spaces.
(3) Registration of the maximum display value (Host \rightarrow CSD-891B)

a: In normal termination

b : Set in error

- The actual load value enters from the right end.
- Never add the decimal point.
- The actual load value is the amount of the minimum digits.
- Then empty sections are all spaces.
(4) Registration with the actual load value (Host \rightarrow CSD-891B)

Return(CSD-891B \rightarrow Host)

- The actual load value enters from the right end.
- Never add the decimal point.
- The actual load value is the amount of the minimum digits.
- Then empty sections are all spaces.
(5) Registration of zero point (Host \rightarrow CSD-891B)

Return(CSD-891B \rightarrow Host)

- Then empty sections are all spaces.
(6) Registration of zero mV / V value (Host $\rightarrow \mathrm{CSD}-891 \mathrm{~B}$)

- Data of zero mV / V value enters up to the fourth place below decimal point (X.XXXX). (Ex : "01000" as $0.1000 \mathrm{mV} / \mathrm{V} "$.)
- Never add the decimal point.

- When the data is minus, " - " sign and when plus, " + " sign is added.
- The empty sections are all spaces.
(7) Registration of span mV / V value (Host \rightarrow CSD -891 B)
00~31 \qquad

Command No
Return(CSD-891B \rightarrow Host)

Data of span mV / V value enters up to the fourth place below decimal point (X.XXXX). (Ex : "02000" as $0.2000 \mathrm{mV} / \mathrm{V} "$.)

- Never add the decimal point.
- The empty sections are all spaces.
(8) Registration of span(Host \rightarrow CSD -891 B)

$$
\text { Return }(\mathrm{CSD}-891 \mathrm{~B} \rightarrow \text { Host })
$$

ID No. $00 \sim 31$

- The empty sections are all spaces.
(9) Command for zero fine adjustment (Host \rightarrow CSD-891B)

Return(CSD-891B \rightarrow Host)
a: In normal termination

b: Set in error

- Data of the fine adjustment enters from the right end.
- Never add the decimal point.
- The actual load value is the amount of the minimum digits.
- Then empty sections are all spaces.
(10) Command for span fine adjustment (Host \rightarrow CSD-891B)

a : In normal termination

b: Set in error

- Data of the fine adjustment enters from the right end.
- Never add the decimal point.
- The actual load value is the amount of the minimum digits.
- Then empty sections are all spaces.
(11) Command for finish of calibration (Host \rightarrow CSD-891B)

(12) Command for reading out the calibration status (Host \rightarrow CSD-891B)

a : In normal termination

ID No. $\square \square$ Command No.
$00 \sim 31$
b : In the calibration

c: In error input

(13) Termination command of calibration mode (Host \rightarrow CSD -891 B)

- Then empty sections are all spaces.

The instrument returns the error command to the host side at the time of Communication error or Execution error.

Error Command No.	Contents	Remarks
01	Error of impossible condition of execution	In the case of Function mode, Calibration mode, Fine adjustment mode and Setting mode.
02	Another error caused from the instrument	In the case of impossible to execute the receiving command.
10	Parity error	In the case of detecting the parity error.
11	Framing error	In case of detecting error for stop bit.
12	Overrun error	In the case of reading error for receiving command.
13	Error of data code, data	
length error	The receiving data code and data length are not the same.	
14	No applicable command	The receiving command isn't the same.

- In case that the Completion code (terminator) is not detected, the error code will not be returned.
- In case that the communication error command is returned from the instrument, consider its remedy at the host side.

10. Trouble shooting

When abnormal point(s) is/are found during the operation of the instrument, check by the following procedures. However, when you can't find applicable item nor solve the symptom of trouble even after you have taken some measures, contact with Minebea.

(1) Remove the connecting cable for strain gage applied transducer from terminal board.
(2) Measure the voltage between the $\mathrm{A}-\mathrm{C}$ terminals on the terminal board.

Set the connecting range to $\mathrm{DC} \square \mathrm{V}$ range for the measuring instrument such as tester and so on.

Set the connecting range to $\mathrm{DC} \square \mathrm{mV}$ range for the measuring instrument such as tester and so on.

(2) Measure the voltage between the A-C terminals on the terminal board.

Set the connecting range to $\mathrm{DC} \square \mathrm{V}$ for the measuring instrument such as tester and so on.

(1) Connect the connecting cable for strain gage applied transducer to the terminal board again. (Refer to the chapter 4.)
(2) Set the load display section to be the monitoring condition for strain gage applied transducer according to the paragraph 7-18.

10-2. Optional check

Error code	Contents of error	Remedy
ER-0	Zero set has executed with more than $\pm 10 \%$ of the maximum display value.	Apply zero set after making it within $\pm 10 \%$ of maximum display value.
	When CHECK is ON, zero setting is executed.	After CHECK is OFF, execute the zero setting.
ER-1	Setting mistake	Set correctly.
ER-2	Mistake in setting during calibration	Set correctly.
ER-3	A/D error	Turn off the power once and turn on it again. If the Error is still shown, contact with Minebea.
ER-4	Displays when the calibration(CCAL, ACAL, LCAL, TARE) is executed with CHECK ON.	After setting the CHECK OFF, execute the calibration.
ER-5	Displays while zero set, tare weight cancellation, zero tracking are ON when the fine adjustment on zero or span is adjusted. Displays while tare weight cancellation is ON when zero set is executed.	Set OFF while zero tracking is OFF. Apply ZERO clear(F-98).
ER-6	When prohibiting the calibration is set, calibration or fine adjustment for analog is proceeded.	Release the prohibition of calibration (F-97).
HOLD	Powered ON with the HOLD input is shorted.	Set the HOLD input open.
LOCK	Displays when the key switch which is the target of key function lock is pressed.	Release the LOCK of key function. (F-06)
TE-L	Displays when the initial value at the time of calibration is less than $-2.5 \mathrm{mV} / \mathrm{V}$.	
TE-H	Displays when the initial load exceeds over 2.5 $\mathrm{m} V / \mathrm{V}$, or the total value with the initial value and the load equal to the maximum display value exceeds over $3.1 \mathrm{mV} / \mathrm{V}$ during calibration	Adjust so that the initial load is within the range from $-2.5 \mathrm{mV} / \mathrm{V}$ to $2.5 \mathrm{mV} / \mathrm{V}$.
SP-L	The value equal to the maximum display value at the time of calibration (LCAL) is less than $0.2 \mathrm{mV} / \mathrm{V}$, or the difference between the initial value and the load equal to the maximum display value is less than $0.2 \mathrm{mV} / \mathrm{V}$.	Adjust so that the load equal to the maximum
SP-H	The value equal to the maximum display value at the time of calibration (LCAL) exceeds 3.1 mV / V, or the difference between the initial value and the load equal to the maximum display value exceeds $3.1 \mathrm{mV} / \mathrm{V}$.	
ER-E	EEPROM error	Contact with Minebea.
ER-R	EEPROM error	Contact with Minebea.
BAT.L	Display when voltage of battery has been decreased.	Press the ${ }^{\text {sinfred }}$ key to enter the measurement mode. When "BAT.L" appears, request to exchange the battery to Minebea. If you will use without exchanging the battery, the contents of memory (RAM) may breaks. However, memory data never breaks by this after "BAT.L" appears if the power supply keeps energizing.

Error code	Contents of error	Remedy
ER-B	Back-up error. The contents of the memory is broken.	Press the mode. (At this time time A/Z data becomes a initial value.) When this error appears at power supply ON every time, contact with Minebea.
OL	Displays when 110% of the maximum display value is exceeded at the time of measurement or in calibration.	Set so that the load display will be within the range from -10% to 110%.
- OL	Displays when -10 \% of the maximum display value is exceeded at the time of measurement or in calibration.	

11. Specifications

11-1. Specifications for analog section

Bridge power supply

Applicable transducers

Input range

Zero adjustment range
Non-linearity
Temperature coefficient
Zero point

Sensitivity

Input noise

Input filter
A/D sampling

CHECK

DC10 V $\pm 0.25 \mathrm{~V}$ within 120 mA (Changeable to DC5 V or 2.5 V) with remote sensing.
Up to 4 pieces of strain gage applied transducers $(350 \Omega$) can be connectable.
F.S. setting is available at the input range from $0.2 \mathrm{mV} / \mathrm{V}$ to $3.1 \mathrm{mV} / \mathrm{V}$.(When bridge power supply is DC10 V.)
$-2.5 \mathrm{mV} / \mathrm{V}$ to $2.5 \mathrm{mV} / \mathrm{V}$
0.01% F.S.
$\pm 0.2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ (Input conversion, at the time of F.S. setting at the input from $0.3 \mathrm{mV} / \mathrm{V}$ to $3.1 \mathrm{mV} / \mathrm{V}$)
$\pm 0.015 \%$ F.S. $/{ }^{\circ} \mathrm{C}$ (Input conversion, at the time of F.S. setting at the input from $0.3 \mathrm{mV} / \mathrm{V}$ to $3.1 \mathrm{mV} / \mathrm{V}$)
$\pm 0.3 \mu \mathrm{Vp}-\mathrm{p}$ or less
(With the default setting of digital filter and stabilized filter)
4 Hz (Changeable to $2 \mathrm{~Hz}, 6 \mathrm{~Hz} 8 \mathrm{~Hz}$ or 10 Hz)
200 times/s
(changeable to 100 times/s, 50 times/s, 25 times/s or 10 times/s)
Approx. $0.3 \mathrm{mV} / \mathrm{V}$
(Setting can be available at the approx. $0.1 \mathrm{mV} / \mathrm{V}$ interval within the range from approx. $0.1 \mathrm{mV} / \mathrm{V}$ to $2.4 \mathrm{mV} / \mathrm{V}$.)
※The extension cable should be applied to Minebea's standard cable CAB-502 (4 cores) within the length of 30 m .
※Not applicable when the zener barrier is used.

11-2. Specifications for digital section

Load display

Display range
Display increment
Display
Over display

Status display
Judgement display
Display rate
Decimal point display

- 9999 to 99999

1 (changeable to 2,5 or 10)
7 segment red LED, with 8 mm character's height
" - OL" displays at the time of minus(-) over, and "OL" displays at the time of plus (+) over.
RUN, A/Z, LOCK, HOLD and CHECK
S0, S1, S2, S3 and S4
20 times/s (changeable to 4 times/s, 50 times/s or 100 times/s)
changeable to Non, $, 10^{1}, 10^{2}, 10^{3}$ or 10^{4}.

Changeover of the function mode or ON/OFF for check value by pressing with the $\stackrel{\text { Sintive }}{\text { Enve }}$ key at the same time.

Displays the set value of S ※ or carry on the set value.
Zero set or increment of set value.
A/Z Tare weight cancellation
Tare weight cancellation clear
Enter key or shift key

11-4. External control function

ZERO Same as the $\frac{\text { ZERO }}{\Delta}$ key
※Above is effective once at the pulse input and the pulse width is 50 ms or more. (Pulse width is changeable to $5 \mathrm{~ms}, 10 \mathrm{~ms}$ or 20 ms .)
A/Z Tare weight cancellation
A/Z OFF Tare weight cancellation clear
※Above are pulse input, and effective once at the pulse width 50 ms or more. (Pulse width is changeable to $2 \mathrm{~ms}, 5 \mathrm{~ms}, 10 \mathrm{~ms}$ or 20 ms)
HOLD Hold of display, comparative output, analog output and BCD output
LOCK Prohibition of key operation
※Above are level input, and effective during the input in short for 50 ms or more. (The level is changeable to $2 \mathrm{~ms}, 5 \mathrm{~ms}, 10 \mathrm{~ms}$ or 20 ms)
Equivalent circuit for the external control input section

11-5. Comparator function

Set value - 9999 to 99999
Numbers of setting 5 points of $\mathrm{S} 0, \mathrm{~S} 1, \mathrm{~S} 2, \mathrm{~S} 3$ and S 4 .
※"S0" is set by function.
Set value for hysteresis data 0 to 99 digits
Setting hysteresis time width 0 to 9.9 s
Hysteresis direction Can be selected whichever "On delay" or "Off delay".
Conversion times for comparator
200 times/s (Synchronous with display rate.)

11-6. Open collector output signal

S1, S2, S3 and S4 Open collector ON when reached under/over the comparator set value.
S0 The open collector ON with either condition in below by function setting.

- FULL condition (100% of rated load).
- When the both of two whichever $\mathrm{S} 1, \mathrm{~S} 2, \mathrm{~S} 3$ or S 4 are OFF condition.
- Operates when reached under/over the S 0 set value.
(Same as the comparative operation of S1, S2, S3 and S4.)
- ON interlocked with HOLD LED
- ON interlocked with A/Z LED
- ON interlocked with LOCK LED

RUN ON during the measurement mode of this instrument.
ERROR ON when the various kinds of errors are occurred.
Specification of open collector $\mathrm{V}_{\mathrm{CE}}=\mathrm{DC} 30 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=30 \mathrm{~mA} \mathrm{MAX}$
Equivalent circuit for open collector output

11-7. Various kinds of functions

Zero tracking Stabilizes the variation of zero point within the fixed condition.
Digital filter Stabilizes the data by the computing process through CPU.
Stabilized filter Only when the load variation width is within the fixed value, this strengthens/stabilizes the digital filter.
Change of target of HOLD With the combination of "Display","Comparative output", "Analog output", "BCD output(Option)", target of HOLD can be made.
Sheet key lock Prohibition of operation of optional key.
Change of target of analog output
The target of analog output can be changed either "Gross weight" or "Net weight".

11-8. General specifications

Operating temperature/humidity range

Temperature	$-10{ }^{\circ} \mathrm{C}$ to $50{ }^{\circ} \mathrm{C}$
Humidity	Less than $85 \% \mathrm{RH}$ (Non condensing.)

Power supply
Power supply voltage AC100 V to AC240 V
(Allowable variable range AC 85 V to AC 264 V)
Power supply frequency $50 / 60 \mathrm{~Hz}$
Power consumption Approx. 16 VA (Without option, at AC100 V)
Approx. 19 VA at maximum. (With option, at AC100 V to AC240 V)
Outline dimensions $(\mathrm{W} \times \mathrm{H} \times \mathrm{D}) 208 \mathrm{~mm} \times 67 \mathrm{~mm} \times 140.7 \mathrm{~mm}$ (Excludes protruding parts.)
Weight
Approx. 1.2 kg (without options)

11-9. Standard specifications at the shipment

Bridge power supply	DC 10 V
Span adjustment	2000 display at the input of $0.3 \mathrm{mV} / \mathrm{V}$.
The minimum scale	1

11-10. Accessories
Instruction manual 1 piece
Midget fuse $\quad 1$ piece (5 A)
Unit seal 1 piece
Short bar between A-F/C-G 2 pieces
BCD output plug 1 piece(Attached only when optional BCD output is installed.)
11-11. Options
11-11-1. Analog output
(1) Current output

```
P P/No.
CSD891B- P07
Specifications
    Output }\quad\textrm{DC}4\textrm{mA}\mathrm{ to 20 mA Load resistance at 510 }\Omega\mathrm{ or less
    Non-linearity 0.05 %F.S.
    Resolution Approx.1/12 000
    Over range " - OL" display at approx.DC2.4 mA and "OL" display at
    approx.DC21.6 mA.
    Output times 200 times/s (Synchronized with the A/D sampling frequency.)
(2) Voltage output
```

- P/No.
- Specifications

Output $\quad \mathrm{DC} 0 \mathrm{~V}$ to 10 V Load resistance $5 \mathrm{k} \Omega$ or more Non-linearity 0.05 \%F.S.
Resolution Approx.1/12 000
Over range "- OL" display at approx. DC - 1 V and "OL" display at approx.DC11 V Output rate 200 times/s (Synchronized with the A/D sampling frequency.)

11-11-2. BCD output

- P/No. CSD891B-P15
- Specifications

Output • BCD 5 digits Parallel output, with polarity(POL.) applied (Output ON with minus, and output OFF with plus.)

- P.C.(Print command)

ON for a fixed time after conversion of BCD output is completed.

- ERROR ON at the time of various errors are occurred.
- OVR(over)
※Above are open collector outputs. $\mathrm{V}_{\mathrm{CE}}=\mathrm{DC} 30 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=\mathrm{DC} 20 \mathrm{~mA}$ MAX

Input	- ZERO	Same as the	key.
	- A/Z	Same as the	key
	- A/Z OFF	Same as the	key

※Above are pulse input, effective once after the pulse width 50 ms or more.
(Pulse width is changeable to $2 \mathrm{~ms}, 5 \mathrm{~ms}, 10 \mathrm{~ms}$ or 20 ms .)

- HOLD Hold of display and BCD output
- LOCK Prohibiting the key operation
- SEL.1, SEL. 2 The output target of the BCD output is switched as follows by the combination of two input status. both SEL. 1 and SEL. 2 are open Gross weight
only SEL. 1 is short Part of A/Z cancel
only SEL. 2 is short Net weight
both SEL. 1 and SEL. 2 are short Gross weight
- BCD-ENABLE Compulsive OFF for the related output of BCD (Hi impedance)
※Above are level inputs, and effective by shortening 50 ms or more during inputting. (Level : $2 \mathrm{~ms}, 5 \mathrm{~ms}, 10 \mathrm{~ms}$ or 20 ms changeable.)
$11-11-3 . \mathrm{RS}-232 \mathrm{C}$ interface
- P/No.

CSD891B-P74

- Specifications

Baud rate
Data bit length : Select from 7 bits or 8 bits.
Parity bit : Select from Non, Even or Odd.
Stop bit
Terminator : Select from CR + LF or CR.
Communication method : Half-duplex
Synchronous method : Start-stop synchronous method
Communication data : ASCII code
Cable length : within 15 m
Input output monitor : with LED

- P/No. CSD891B-P76
- Specifications

Baud rate
Data bit length
Parity bit
Stop bit
Terminator
: Select from 1 200, 2 400, 4 800, 9600,19200 or 38400 bps.
: Select from 7 bits and 8 bits.
: Select from Non, Even or Odd.
: Select from 1 bit or 2 bits.
: Select from CR + LF and CR.
Communication method : Half-duplex
Synchronous method : Start-stop synchronous method
Address : Select one among 0 to 31.
Communication data : ASCII code
Cable length : Approx. 1 km
No. of connections : 32 sets at max.(RS-422: 10 sets)
Termination : Built-in (Yes/No can be selected by the connection with terminal board.) With input/output monitor LED.
Input/output monitor with LED
Change of RS-422/485 : Can be set in Function.
11-12. Outline dimensions

Front

Side

Unit: mm

12. Warranty

12-1. Warranty

- The instrument is covered by a warranty for a period of one year from the date of delivery.
- As for repairs and/or after service is required during the period of warranty, contact with Minebea's sales office or sales agent from which you have purchased.

12-2. Repair

Before asking repairs, make checks once again that the connection, setting and adjustment for the instrument have finished properly by referring to 10 . Trouble shooting. Especially, make checks whether the connections of sensors are disconnected or cut off. After that, still there may be found some defects in the instrument, contact with Minebea's sales office or sales agency from which you have purchased.

13. Appendix

13-1. Replacement of fuse

! Warning When installation method for the fuse is wrong and/or the capacity of installed fuse is inadequate, it causes and unexpected faulty of the instrument.

(1) Turn OFF the power supply for the instrument.
(2) Remove the 2 pieces of setscrews on the front panel, and remove the front panel to the arrow direction.

(3) Remove 3 pieces of set-screws for printed board, and draw the printed board to the arrow direction.

(4) Replace the fuse installed on the AMP CARD

(5) After the fuse is exchanged, the substrate assembly is slowly inserted in the case.
(At this time, the substrate is passed through the ditch in three places.)

(6) Three stop screws of the P.C. board assembly are installed. Confirm the metal plate section and the case with the P.C. board assembly have stuck.

(7) The front panel is installed in the case with two front panel stop screws.

13-2. Character's pattern for display
The followings are the table to show the display pattern used at 7 segments display on the instrument.

0	18	0	d	Q	9
1	8	E	E	R	8
2	2	F	8	S	3
3	3	G	5	T	8
4	4	H	H	U	18
5	5	I	b	V	H
6	5	J	\&	W	\triangle
7	7	K	1	X	$\stackrel{4}{4}$
8	8	L	\&	Y	3
9	3	M	$\stackrel{\square}{\text { or }}$	Z	$=$
A	8	N	ob	?	P
B	\square	0	$\stackrel{-}{8}$!	\bigcirc
C	E	P	P	-	-

$13-3$. Setting table for functions

※Make use of them in case that the customer has changed setting for the function.

Function No.	Initial value	Customer's setting	Function No.	Initial value	Customer's setting
$\mathrm{F}-01$	00000		$\mathrm{F}-44$	00000	
F-02	00004		$\mathrm{F}-45$	00001	
$\mathrm{F}-03$	00001		$\mathrm{F}-46$	00001	
$\mathrm{F}-04$	00001		$\mathrm{F}-50$	00001	
$\mathrm{F}-05$	00001		$\mathrm{F}-51$	00000	
$\mathrm{F}-06$	00000		$\mathrm{F}-52$	00003	
F-08	00000		$\mathrm{F}-53$	00021	
F-09	00020		F-54	00000	
F-10	11111		F-55	00001	
$\mathrm{F}-11$	00003		$\mathrm{F}-56$	00000	
$\mathrm{F}-12$	00000		$\mathrm{F}-57$	00000	
$\mathrm{F}-15$	00002		$\mathrm{F}-58$	00000	
$\mathrm{F}-16$	00020		$\mathrm{F}-59$	00005	
F-17	00020		$\mathrm{F}-65$	00010	
$\mathrm{F}-20$	00000		$\mathrm{F}-66$	00005	
$\mathrm{F}-21$	00000		$\mathrm{F}-72$	00000	
$\mathrm{F}-22$	02000		$\mathrm{F}-84$	00002	
$\mathrm{F}-30$	11111		$\mathrm{F}-85$	00001	
$\mathrm{F}-31$	00000		$\mathrm{F}-86$	00000	
$\mathrm{F}-32$	00000		$\mathrm{F}-87$	00000	
$\mathrm{F}-33$	00000		F-90	-	
$\mathrm{F}-34$	00000		$\mathrm{F}-91$	-	
$\mathrm{F}-35$	00000		F-92	-	
$\mathrm{F}-36$	00000		F-93	-	
F-40	00000		F-94	-	
$\mathrm{F}-41$	00000		F-97	00000	
$\mathrm{F}-42$	00000		F-98	-	
$\mathrm{F}-43$	00000		F-99	-	
MEMO					

- The contents of this manual may subject to change without notice.

head quarter : MINEBEA CO., LTD.

4106-73 Miyota, Miyota-machi, Kitasakugun, Nagano-ken 389-0293, Japan (30267-32-2200 FAX.0267-31-1350

Measuring Components Business Unit

FUJISAWA PLANT	$1-1-1$, Katase, Fujisawa-shi Kanagawa-ken, 251-8531 Japan $\boldsymbol{Z} 0466-22-7151 ~ F a x .0466-22-1701 ~$

Z $\mathbf{Z} 0466$-22-7151 Fax.0466-22-1701
KARUIZAWA PLANT 4106-73 Miyota, Miyota-machi, Kitasakugun, Nagano-ken 389-0293, Japan
($0267-31-1309$ Fax.0267-31-1350
HOMEPAGE ADDRESS http://www.minebea-mcd.com

