ACJ 시리즈 디지털 정션 박스 매뉴얼

Version : 1.08

Revised : 2025-06-17

주의

- ◆ 본 설명서의 내용은 예고 없이 변경될 수 있습니다.
- ◆ 본 설명서의 내용이 잘못되거나 기재가 누락된 곳 등 문의 사항이 있으면 구매하신 곳으로
 연락 주십시오.
- ◆ 제품의 성능 향상의 위하여 예고 없이 기능이 변경될 수 있습니다.

설치 전 유의사항

본 제품은 정밀 전자기기로 취급 시 아래와 같은 주의가 필요합니다.

- ◆ 진동이 심한 곳에서는 사용하지 마십시오.
- ◆ 순간적으로 과도한 충격을 주지 마십시오.
- ◆ 운용 중에는 제품이 비를 맞지 않게 주의하여 주십시오.
- ◆ 급격한 온도변화가 있는 장소는 가급적 피하십시오.
- ◆ 고압이나 전기적 잡음이 심함 곳에는 설치하지 마십시오.
- ◆ 사용자 임의로 절대로 개조, 분리 혹은 수리하지 마십시오.
- ◆ 스위치는 가볍게 눌러도 동작이 되니 지나친 힘을 가하지 마십시오.

INDEX

1.	제품 사양	3
2.	각 부 명칭	4
	2.1. 제품 외관	4
	2.2. 제품 내부	5
3.	결선 방법	6
	3.1. POWER (전원)	6
	3.2. CAN 통신 연결	6
	3.3. 스트레인게이지 센서	10
4.	부하 교정	11
	4.1. 실 부하 교정	11
	4.2. 등가 입력 교정	13
5.	중력 보상	14
6.	중량 보정	16
7.	교정 변경	17
	7.1. 영점 재 교정	17
	7.2. 분해도 변경	17
	7.3. 스판상수 변경	18
8.	백업 및 복원	19
9.	설정 모드	20
10	. 테스트 모드	22

1. 제품 사양

케이스 재질	ABS 플라스틱
방수 방진 등급	IP-65
표시 부	0.96인치 OLED Display
스위치	TACT 스위치 5개
사용가능센서	스트레인게이지 브릿지 센서
채널 수	4, 6, 8 채널 선택 가능
ADC 분해능	24 Bit
ADC 데이터 레이트	채널 당 23회/초
센서 인가 전압	DC 4.5V
센서 외부 분해능	1/99,999
센서 입력 감도	0.2uV/D
센서 입력 범위	0~39mV (-19.5~19.5mV)
시리얼 인터페이스	CAN 통신
전원 사양	5VDC, 1W (AI-35D의 E1+, E1- 단자를 이용하여 전원 공급)
제품 사용 온도	-20 ~ 60°C
제품 사용 습도	85% R.H.(결로 현상이 없는 곳)
제품 사이즈	181(W) x 120(H) x 56(D)
제품 무게	약 0.3kg

2. 각 부 명칭

<u>2.1. 제품 외관</u>

번호	명칭	기능
1~8	LC1~LC8 (센서)	8개의 센서 연결 부
9	POWER, CAN 통신	AI-35D의 전원공급 (E1+, E1-) 및 CAN 통신(CANH, CANL) 연결 부

<u>2.2. 제품 내부</u>

번호	명칭	기능
1~8	센서 1~8 커넥터	번호 순서대로 센서를 연결하십시오.
9	CAN 통신 커넥터	AI-35D의 CANH, CANL 단자를 연결하십시오.
10	전원 커넥터	AI-35D의 E1+, E1-단자를 연결하십시오. ❶ AI-35D의 E1+, E1-단자에서는 5VDC가 공급됩니다.
11	표시기	0.96인치 OLED
12~17	조작 스위치	메뉴 이동 및 선택 시에 사용합니다.

3. 결선 방법

구멍에 연결선을 끼워 놓은 후에 일자 드라이버로 조이면 결선이 이뤄집니다. 결선 후에는 연결 선을 살짝 당겨 결선이 제대로 이뤄졌는지 확인하십시오.

▲ 반드시 전원을 차단 또는 분리한 후에 결선하십시오.

- ▲ 결선 작업 시, 각 부의 위치 및 용도를 반드시 확인하시고 안전 사고에 유의하시기 바랍니다.
- 한 단자대 연결 가능한 와이어의 사이즈는 코어 직경 0.5~1.0 (AWG 24~18)입니다.
 와이어 피복을 벗긴 부위는 5mm가 적당하며, 연선으로 이뤄진 경우에는 납으로 뭉쳐주거나 I-

터미널을 사용하십시오. (CE002508 Φ1.1 terminal)

3.1. POWER (전원)

반드시 AI-35D의 E1+, E1-를 극성에 맞게 연결하십시오. ▲ 다른 외부 전원을 연결하면 제품 파손이 일어날 수 있습니다. ▲ 반드시 AI-35D의 전원이 차단된 상태에서 결선하십시오.

ACJ 장비	AI-35D
VDC (E1+)	E1+
GND (E1-)	E1-

3.2. CAN 통신 연결

CAN 통신은 전기적인 노이즈에 민감하므로, 전원선을 비롯한 전기배선들과 별로도 분리하여 배 선하고 가능하면 페어(트위스트)케이블 선을 사용하십시오.

ACJ 장비	AI-35D
CANH	CANH
CANL	CANL

◆ 수신 프로토콜 (외부장비→ACJ)

ID: CAN 통신 ID Hex 값 *ID에서 XX는 외부장비에서 설정한 장비번호 / DLC: 데이터 길이

ID	DLC	Byte0	Byte1		
AXXh	2	채널	기능		

[채널 맵]

0: 전체 채널 / 1: 1채널 / 2: 2채널 / 3: 3채널 / 4: 4채널 / 5: 5채널 / 6: 6채널 / 7: 7채널 / 8: 8채널 [기능 맵]

0: 영점 기능

* 예시 분석에 사용된 PC 프로그램: CAN Viewer

예시 데이터 분석 : PC에서 영점기능을 수행하는 방법

		2)		3									
	ExtID	A01	[DataFrame	0	0								
	time:32	:30:653	RX:	STDID:_	101	data:41	E8	03	00	08	00	00	00	
	time:32	:30:658	RX:	STDID:_	201	data:88	00	00	00	0 8	00	00	00	
	time:32	:30:663	RX:	STDID:_	301	data:08	00	00	00	0 8	00	00	00	
	time:32	:30:668	RX:	STDID:_	401	data:08	00	00	00	0 8	00	00	00	
	time:32	:30:855	RX:	STDID:_	101	data:41	E9	03	00	0 8	00	00	00	
	time:32	:30:860	RX:	STDID:_	201	data:88	00	00	00	0 8	00	00	00	
	time:32	:30:865	RX:	STDID:_	301	data:08	00	00	00	0 8	00	00	00	
	time:32	:30:870	RX:	STDID:_	401	data:08	00	00	00	0 8	00	00	00	
	time:32	:31:057	RX:	STDID:_	101	data:41	E9	03	00	0 8	00	00	00	
	time:32	:31:062	RX:	STDID:_	201	data:88	00	00	00	Ø 8	00	00	00	
\bigcirc	time:32	:31:067	RX:	STDID:_	301	data:08	00	00	00	0 8	00	00	00	
	time:32	:31:072	RX:	STDID:_	401	data:08	00	00	00	08	00	00	00	
\sim 1	time:32	:31:259	RX:	STDID:	101	data:41	E8	03	00	80	00	00	00	
	time:32	:31:264	RX:	STDID:_	201	data:88	00	00	00	80	00	00	00	
	time:32	:31:269	RX:	STDID:_	301	data:08	00	00	00	80	00	00	00	
5	time:32	:31:274	RX:	STDID:	401	data:08	00	00	00	80	00	00	00	
<u> </u>	time:32	:31:434	1X:	EXIID:0	10000A01	data:00	00	02	00	00	0.0	00	00	
	time:32	:31:401	KX:	STDID:_	101	data:41	E9	03	00	80	00	00	00	
_	time:32	:31:400	KX:	STDID:	201	data:88	00	00	00	00	00	00	00	
	time:32	.21.476	KX:	STDID:		data 400	00	00	00	00 00	00	00	00	
<u> </u>	time:32	:31:4/0	KA:		401	data:08	00	00	00	00	00	00	00	
-	LTINE: 27	1011800	ΓΛ.	SIDTD:	101	uald:ZI	00	00	90	00	90	90	00	

1: ACJ와 CAN 통신 시 Extended ID(29비트)를 반드시 사용해야 합니다. Standard ID(11비트)를 사용할 경우 장비에서 해당 메시지를 인식하지 않으므로 명령이 동작하지 않습니다.

2: PC에서는 AXXh 형식의 ID를 사용하여 명령을 송신합니다.

여기서 XX는 장비 번호를 의미하며, 0xA01은 장비번호 1번에 해당하는 명령을 의미합니다. 3: 데이터 프레임 구성:

- Byte0 = 0: 모든 채널(채널1~8)에 대한 작업을 의미합니다. → "채널 맵" 참고
- Byte1 = 0: 영점(Zero) 기능을 수행하는 명령입니다. → "기능 맵" 참고

4: ACJ 장치에서는 실시간 데이터가 전송되고 있으며, 현재 채널 1번에는 03 E9라는 값이 들어 있 습니다. 이는 리틀 엔디안 방식으로 해석하면 10진수 1001에 해당합니다. 5: PC에서 영점 명령을 전송하면, 장비는 해당 채널에 대해 영점 처리를 수행합니다. 6: 명령이 정상적으로 수행된 후, 채널 1번의 측정값이 0으로 변경된 것을 확인할 수 있습니다. ◆ 송신 프로토콜 (ACJ→외부장비)

데이터 구성표

ID: CAN 통신 ID Hex 값 *ID에서 XX는 외부장비에서 설정한 장비번호 / DLC: 데이터 길이

ID	데이터	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
(식별자)	길이								
1XXh	8	맵 1	17	배널 무게	레이터	맵 2	2채님	늴 무게데	이터
2XXh	8	맵 3	37	3채널 무게데이터			4채 \	늴 무게데	이터
3XXh	8	맵 5	5채널 무게데이터			맵 6	6채널 무게데이터		
4XXh	8	맵 7	7,	배널 무게	레이터	맵 8	8채님	늴 무게데	이터

예시 데이터 분석

- CAN 통신에서 사용되는 메시지는 각기 다른 "주소" 값을 가지며, 이 주소는 데이터를 구분하는 식별자 역할을 합니다. 예시 데이터에서는 1XXh부터 4XXh까지의 주소가 반복적으로 사용되며, 하나의 주소당 두 개 채널(2CH) 의 무게 데이터가 포함되어 있습니다.
- Byte0에는 맵 정보가 포함되어 있으며, 주소에 따라 아래와 같이 매핑됩니다:
 1XXh 주소에는 맵1, 2XXh에는 맵3, 3XXh에는 맵5, 4XXh에는 맵7이 들어 있습니다.
- Byte1~3은 무게 데이터를 나타내며, 주소별로 다음과 같이 채널이 대응됩니다: 1XXh는 1채널, 2XXh는 3채널, 3XXh는 5채널, 4XXh는 7채널 무게 값입니다. 이 값은 리틀 엔디안 형식으로 저장되어 있습니다.
- Byte4에는 두 번째 맵 정보가 들어 있으며, 주소별로 다음처럼 매핑됩니다: 1XXh는 맵2, 2XXh는 맵4, 3XXh는 맵6, 4XXh는 맵8을 의미합니다.
- Byte5~7은 두 번째 채널의 무게 데이터를 나타내며, 각각 1XXh는 2채널, 2XXh는 4채널, 3XXh는 6채널, 4XXh는 8채널 무게 값에 해당합니다. 이 역시 리틀 엔디안 방식으로 해석해야 합니다.

상세 예시 데이터 분석

time:05:37:058 RX: STDID:____101 data:01 E9 03 00 09 00 00 00

- 주소 101은 1XXh 주소군에 속하며, 이는 장비 번호가 1번으로 설정되어 있다는 의미입니다.

- Byte1~3은 E9 03 00으로 주어져 있으며, 이는 리틀 엔디안(Little Endian) 형식이므로 바이트 순서를 뒤집어 00 03 E9로 해석해야 합니다. 이를 10진수로 변환하면 1001이 되며, 이 값이 센서가 측정한 실제 무게입니다.
- Byte0과 Byte4는 각각 0x01(2진수: 0000 0001)과 0x09(2진수: 0000 1001)입니다. 이 두 바이트에서 소수점 위치를 나타내는 비트만 추출할 때, 각 값의 1비트(두 번째 비트)와 0비트(첫 번째 비트)를 사용합니다. 각각 01과 01이 추출되며, 이를 합쳐서 (Byte0->Byte1 순서) 0101이라는 4비트 이진수를 구성합니다.

이 값을 10진수로 변환하면 5가 되므로, 소수점은 5자리라는 것을 알 수 있습니다.

※ 이 방식은 단위와 채널 해석에도 동일하게 적용됩니다.

[맵1]:MSB->LSB

소수점의 경우

7bit(MSB)	6bit	5bit	4bit	3bit	2bit	1bit	0bit		
마이너스	안정	영점	오버로드	교정에러	센서에러	소수점			
[맵2]:MS	SB->LSB								
7bit(MSB)	6bit	5bit	4bit	3bit	2bit	1bit	0bit		
마이너스	안정	영점	오버로드	교정에러	센서에러	소극	> 점		
[맵3]:MS	SB->LSB								
7bit(MSB)	6bit	5bit	4bit	3bit	2bit	1bit	0bit		
마이너스	안정	영점	오버로드	교정에러	센서에러	단	위		
[맵4]:MS	SB->LSB								
7bit(MSB)	6bit	5bit	4bit	3bit	2bit	1bit	0bit		
마이너스	안정	영점	오버로드	교정에러	센서에러	단	단위		
[맵5]:MS	SB->LSB								
7bit(MSB)	6bit	5bit	4bit	3bit	2bit	1bit	0bit		
마이너스	안정	영점	오버로드	교정에러	센서에러	채	드		
[맵6]:MS	SB->LSB								
7bit(MSB)	6bit	5bit	4bit	3bit	2bit	1bit	0bit		
마이너스	안정	영점	오버로드	교정에러	센서에러	채	티		
[맵7]:MS	SB->LSB								
7bit(MSB)	6bit	5bit	4bit	3bit	2bit	1bit	0bit		
마이너스	안정	영점	오버로드	교정에러	센서에러				
[맵8]:MS	[맵 8]: MSB->LSB								
7bit(MSB)	6bit	5bit	4bit	3bit	2bit	1bit	0bit		
마이너스	안정	영점	오버로드	교정에러	센서에러				

3.3. 스트레인게이지 센서

각 센서 커넥터에 센서 번호를 일치시키고 아래 센서 그림을 참고하여 보드에 표시된 이름대로 결선하십시오.

4. 부하 교정

<u>4.1. 실 부하 교정</u>

센서의 표준 실제 분동 및 부하(하중, 변위, 압력 등)를 가하여 교정하는 모드입니다.

번호	동작	표시 부
1	교정 모드 선택 센서 연결 후 장비에 전원을 공급하면 메뉴 화면이 표시됩니다. 메뉴 화면에서 [중량 교정]을 선택하십시오. 이 메뉴의 선택은 <상><하>키만 사용하십시오. 해당 화면에서 <좌> or <우>키를 2초간 누르면 영점이 보상됩니다.	메뉴 (1/2) 테스트 모드 설정 모드 ▶ 중량 교정
2	<u>실 부하 교정 선택</u> [실부하 교정]을 선택하십시오.	뒤로 (1/2) ▶실부하 교정 등가입력 교정 중력가속도 보정
3	<u>센서 선택</u> 교정 하고자 하는 센서를 선택하십시오. <우>키를 누르면 다음 페이지(센서7, 센서8)로 이동합니다.	취소 (1/2) ▶ 센서1 센서4 센서2 센서5 센서3 센서6
4	<u>센서 동작 방향 선택</u> 센서의 동작 방향을 선택하십시오. [양방향]을 선택하면 정/역 방향으로 측정 가능합니다.	취소 ▶ 단방향 양방향
5	교정 구간 선택 성능이 좋지 않은 센서의 직선성을 소프트웨어로 보정합니다. 1구간으로 직선성이 보장되지 않을 경우에는 2,3,5,7,10 구간 중 원하는 구간을 선택하십시오.	취소 ▶ 1구간 5구간 2구간 7구간 3구간 10구간
6	최대 표시 용량 입력 최대 표시 용량 입력 후 [다음]을 선택하십시오. 최대 표시 용량이 300이고 소수점 2자리를 사용한다면 30000을 입력하십시오.	> 취소 다음 최대 표시 030000
7	<u>최소 표시 눈금 선택</u> 최소 표시 눈금 선택 후 [다음]을 선택하십시오.	▶ 취소 다음 최소 눈금 5
8	<u>영점 교정</u> 무 부하 상태에서 A/D 변환 값이 안정되면 [다음]을 선택하십시오.	▶ 취소 다음 영점 교정 14959

9	 스판 교정 오른쪽에 교정 부하 값을 입력하고 부하를 가한 후에 A/D 변환 값 (예제 화면 14959)이 안정되면 [다음]을 선택하십시오. 1구간 선택일 경우, 직선성을 높이기 위해 최대용량의 10% 이상 의 부하를 사용해야 합니다. 에제 화면은 1구간 선택일 경우의 스판 교정 화면입니다. 5구간 선택일 경우에는 차례대로 5번의 스판 교정을 실행하십시 오. 각 구간의 입력 값은 가압하거나 올려 놓은 분동의 총 누계 량을 입력해야 하며, 부하 값 입력과 부하를 가하는 순서는 바뀌 어도 관계가 없습니다. 	▶ 취소 다음 스판 교정 1 / 1 14959 030000
10	<u>소수점 자릿수 선택</u> 소수점 자릿수를 선택 한 후 [다음]을 선택하십시오. 소수점은 총 5자리까지 선택 가능합니다.	▶ 취소 다음 소수점 자릿수 0.00
11	확인 및 저장 실시간으로 부하 값을 표시합니다. 교정 된 값이 맞는지 확인 후 [저장]을 선택해 교정을 마칩니다. ❶ 무 부하 상태 값이 0이 아니면 <상> or <하> 키로 영점 보상을 할 수 있습니다.	▶ 취소 저장 교정 확인 300.00
12	위와 같은 방법으로 나머지 센서의 교정을 실행하십시오.	

4.2. 등가 입력 교정

센서의 출력 값(mV/V)을 입력하여 교정하는 모드입니다.

번호	동작	표시 부
1	교정 모드 선택 센서 연결 후 장비에 전원을 공급하면 메뉴 화면이 표시됩니다. 메뉴 화면에서 [중량 교정]을 선택하십시오. 이 메뉴의 선택은 <상><하>키만 사용하십시오. 해당 화면에서 <좌> or <우>키를 2초간 누르면 영점이 보상됩니다.	
2	<u>등가입력 교정 선택</u> [등가입력 교정]을 선택하십시오.	뒤로 (1/2) 실부하 교정 ▶ 등가입력 교정 중력가속도 보정
3	<u>센서 선택</u> 교정 하고자 하는 센서를 선택하십시오. <좌><우>키를 누르면 다음 페이지(센서7, 센서8)로 이동합니다.	취소 (1/2) ▶ 센서1 센서4 센서2 센서5 센서3 센서6
4	<u>센서 동작 방향 선택</u> 센서의 동작 방향을 선택하십시오. [양방향]을 선택하면 정/역 방향으로 측정 가능합니다.	취소 ▶ 단방향 양방향
5	최대 표시 용량 입력 최대 표시 용량 입력 후 [다음]을 선택하십시오. 최대 표시 용량이 300이고 소수점 2자리를 사용한다면 30000을 입력하십시오.	▶ 취소 다음 최대 표시 030000
6	<u>최소 표시 눈금 입력</u> 최소 표시 눈금 입력 후 [다음]을 선택하십시오.	▶ 취소 다음 최소 눈금 5
7	<u>센서 정격 용량 입력</u> 센서 성적서에 기재된 센서의 정격 용량(R.C.: Rated Capacity)을 입력하십시오.	▶ 취소 다음 센서 정격 용량 030000
8	선서 정격 출력값 입력 센서 성적서에 기재된 센서의 정격 출력 값(R.O.: Rated Output)을 입력하십시오. 참고로, 알루미늄 재질의 로드셀은 성적서의 출력 값 이 실제 출력 값과 다를 수 있으니 반드시 고 정밀 DVM으로 실제 출력 값을 측정하여 입력하십시오. 측정 값을 입력 후, [다음] 선택 시에는 영점 교정이 동시에 이뤄 지므로 반드시, 무 부하 상태에서 [다음]을 선택하십시오.	▶ 취소 다음 센서 정격 출력 02.0543

9	<u>소수점 자릿수 선택</u> 소수점 자릿수를 선택 한 후 [다음]을 선택하십시오. 소수점은 총 5자리까지 선택 가능합니다.	▶ 취소 다음 소수점 자릿수 0.00
10	확인 및 저장 실시간으로 부하 값을 표시합니다. 교정 된 값이 맞는지 확인 후 [저장]을 선택해 교정을 마칩니다. ❶ 무 부하 상태 값이 0이 아니면 <상> or <하> 키로 영점 보상을 할 수 있습니다.	> 취소 저장 교정 확인 300.00
11	위와 같은 방법으로 나머지 센서의 교정을 실행하십시오.	·

5. 중력 보상

실 부하 교정 장소와 중력 가속도 값이 다른 타 국가 및 지역에서 사용할 경우, 사용 장소의 중 력 가속도 값을 입력하여 측정 값 보정을 하는 모드로 해당 사항이 없으면 사용하지 않습니다.

번호	동작	표시 부
1	교정 모드 선택 센서 연결 후 장비에 전원을 공급하면 메뉴 화면이 표시됩니다. 메뉴 화면에서 [중량 교정]을 선택하십시오. 이 메뉴의 선택은 <상><하>키만 사용하십시오. 해당 화면에서 <좌> or <우>키를 2초간 누르면 영점이 보상됩니다.	메뉴 (1/2) 테스트 모드 설정 모드 ▶ 중량 교정
2	<u>중력 보상 선택</u> [중력가속도 보정]을 선택하십시오.	<u>뒤로</u> (1/2) 실부하 교정 등가입력 교정 ▶ 중력가속도 보정
3	<u>중력 보상 장소 선택</u> [교정 중력가속도]와 [사용 중력가속도]의 값이 같으면 보상이 이뤄지지 않습니다.	취소 ▶ 교정 중력가속도 사용 중력가속도
4	<u>교정 장소 중력 가속도 입력</u> 교정 장소의 중력가속도 값을 입력하고 [저장]을 누르십시오.	> 취소 저장 교정 중력가속도 9.799
5	<u>사용 장소 중력 가속도 입력</u> 사용 장소의 중력가속도 값을 입력하고 [저장]을 누르십시오.	▶ 취소 저장 사용 중력가속도 9.797

◆ 중력 가속도 테이블 (단위: m/s²)

Amsterdam	9.813	Manila	9.784
Athens	9.800	Melbourne	9.800
Auckland NZ	9.799	Mexico City	9.779
Bangkok	9.783	Milan	9.806
Birmingham	9.813	New York	9.802
Brussels	9.811	Oslo	9.819
Buenos Aires	9.797	Ottawa	9.806
Calcutta	9.788	Paris	9.809
Chicago	9.803	Rio de Janeiro	9.788
Copenhagen	9.815	Rome	9.803
Cyprus	9.797	San Francisco	9.800
Djakarta	9.781	Singapore	9.781
Frankfurt	9.810	Stockholm	9.818
Glasgow	9.816	Sydney	9.797
Havana	9.788	Tainan	9.788
Helsinki	9.819	Taipei	9.790
Kuwait	9.793	Tokyo	9.798
Lisbon	9.801	Vancouver, BC	9.809
London (Greenwich)	9.812	Washington DC	9.801
Los Angeles	9.796	Wellington NZ	9.803
Madrid	9.800	Zurich	9.807

6. 중량 보정

중량 값을 보정하는 기능입니다.

무게 교정 시 중량 보정 기능은 초기화됩니다. 무게 교정 후 설정하여 주세요.

번호	동작	표시 부
1	교정 모드 선택 센서 연결 후 장비에 전원을 공급하면 메뉴 화면이 표시됩니다. 메뉴 화면에서 [중량 교정]을 선택하십시오. 이 메뉴의 선택은 <상><하>키만 사용하십시오. 해당 화면에서 <좌> or <우>키를 2초간 누르면 영점이 보상됩니다.	메뉴 (1/2) 테스트 모드 설정 모드 ▶ 중량 교정
2	<u>중량 보정 선택</u> [중량 보정]을 선택하십시오.	<u>뒤로 (2/2)</u> ▶ 중량 보정
3	<u>중량 보정 활성화 여부 선택</u> 중량 보정 활성화 여부를 선택하십시오.	▶ 취소 다음 중량 보정 On
4	인디케이터 표시 값 입력 인디케이터 표시 값을 입력하십시오.	▶ 취소 다음 중량 보정 1/2 10000
5	<u>중량 보정 값 입력</u> 중량 보정 값을 입력하십시오. 표시 값이 입력한 보정 값으로 보정됩니다.	▶ 취소 저장 중량 보정 2/2 10100

7. 교정 변경

7.1. 영점 재 교정

영점의 변화가 생긴 경우, 영점만 재 교정하는 경우에 사용합니다.

번호	동작	표시 부
1	<u>교정 변경 모드 선택</u> 센서 연결 후 장비에 전원을 공급하면 메뉴 화면이 표시됩니다. 이때, <우>키를 누르면 다음 페이지 메뉴가 표시됩니다. [교정 변경]을 선택하십시오.	메뉴 (2/2) ▶ 교정 변경 백업 및 복원
2	<u>영점 변경 선택</u> 영점 재 교정을 위해 [영점 변경]을 선택하십시오.	뒤로 ▶ 영점 변경 분해도 변경 스판상수 변경
3	<u>센서 선택</u> 영점 재 교정을 하고자 하는 센서를 선택하십시오. <좌><우>키를 누르면 다음 페이지(센서7, 센서8)로 이동합니다.	취소 (1/2) ▶ 센서1 센서4 센서2 센서5 센서3 센서6
4	<u>영점 재 교정</u> 무 부하 상태에서 A/D 변환 값이 안정되면 [저장]을 선택하십시오	▶ 취소 저장 영점 변경 15328

<u>7.2. 분해도 변경</u>

소수점 자릿수를 변경하여 분해도를 변경합니다. 분해도 변경(Resolution)은 연결된 모든 센서에 일괄 변경 적용됩니다.

번호	동작	표시 부
1	교정 변경 모드 선택 센서 연결 후 장비에 전원을 공급하면 메뉴 화면이 표시됩니다. 이때, <우>키를 누르면 다음 페이지 메뉴가 표시됩니다. [교정 변경]을 선택하십시오.	메뉴 (2/2) ▶ 교정 변경 백업 및 복원
2	<u>분해도 변경 선택</u> [분해도 변경]을 선택하십시오.	뒤로 영점 변경 ▶ 분해도 변경 스판상수 변경
3	분해도 변경 x 0.1 : 현재 표시된 값에서 마지막 자리가 제거됩니다. 원래 표시 값이 1998이라면 반올림하여 2000이 표시됩니다. x 1 : 교정 시의 원래의 분해도로 환원됩니다. x 10 : 현재 표시된 값에서 소수점 1자리가 더 추가됩니다. 현재 표시 값이 1998이라면 1997.5~1998.4로 표시합니다.	취소 ▶ x 0.1 x 1 x 10

7.3. 스판상수 변경

교정된 스판 상수 값을 변경하여 측정 값을 보정하는 메뉴입니다.

번호	동작	표시 부
1	<u>교정 변경 모드 선택</u> 센서 연결 후 장비에 전원을 공급하면 메뉴 화면이 표시됩니다. 이때, <우>키를 누르면 다음 페이지 메뉴가 표시됩니다. [교정 변경]을 선택하십시오.	메뉴 (2/2) ▶ 교정 변경 백업 및 복원
2	<u>스판상수 변경 선택</u> [스판상수 변경]을 선택하십시오.	뒤로 영점 변경 분해도 변경 ▶ 스판상수 변경
3	<u>센서 선택</u> 스판상수를 변경하고자 하는 센서를 선택하십시오. <좌><우>키를 누르면 다음 페이지(센서7, 센서8)로 이동합니다.	취소 (1/2) ▶ 센서1 센서4 센서2 센서5 센서3 센서6
4	 스판상수 변경 반드시 현재의 스판상수 값을 기록한 후 보정하십시오. ▲ 다 구간 교정인 경우에는 단일 구간 교정으로 평균 처리되므로 주의하십시오. 	> 취소 저장 스판상수 변경 0.9876541

8. 백업 및 복원

번호	동작	표시 부
1	백업 및 복원 모드 선택 센서 연결 후 장비에 전원을 공급하면 메뉴 화면이 표시됩니다. 이때, <우>키를 누르면 다음 페이지 메뉴가 표시됩니다. [백업 및 복원]을 선택하십시오.	메뉴 (2/2) 교정 변경 ▶ 백업 및 복원
2	<u>백업 실행</u> 교정 시에는 첫번째 영역에 자동으로 백업이 이뤄집니다. 교정 및 메뉴 설정의 내용을 모두 백업하려면 [비어 있음]을 선택 한 후, <좌><우>키 2개를 동시에 누르십시오.	뒤로 백업됨 ▶ 비어 있음 비어 있음
3	<u>복원 실행</u> 설정 데이터를 복원하려면 해당 영역을 선택한 후, <좌><선택>키 2개를 동시에 누르십시오.	뒤로 백업됨 ▶백업됨 비어 있음
4	<u>삭제 실행</u> 백업된 데이터를 삭제하려면 해당 영역을 선택한 후, <우><선택> 키 2개를 동시에 누르십시오.	뒤로 백업됨 ▶백업됨 비어 있음

9. 설정 모드

번호	동작	표시 부
1	설정 모드 진입 센서 연결 후 장비에 전원을 공급하면 메뉴 화면이 표시됩니다. [설정 모드]를 선택하십시오. <좌><우>키를 눌러 설정 메뉴 페이지를 이동할 수 있습니다. 뒤로 (1/4) 위로 (2/4) 위로 (3/4) 가워온제로 안정 시간 동신속도 양정 폭 공장 초기화	메뉴 (1/2) 테스트 모드 ▶ 설정 모드 중량 교정
2	<u>언어 선택 (한국어 / English)</u> 화면에 표시되는 언어를 선택하십시오.	▶ 취소 저장 언어 한국어
3	<u>채널 (3, 4, 6, 8채널)</u> ACJ에 연결할 센서의 개수를 선택하고 채널 번호에 맞춰 연결 하십시오.	▶ 취소 ▶ 저장 채널 3채널
4	LP Filter (Off / 0.7 / 1.0 / 1.4 / 2.0 / 2.8 / 4.0 / 5.6 / 7.0 / 10.0 / 14.0 / 20.0 / 28.0 / 40.0 Hz) 로우패스 필터로 숫자가 높아질수록 표시 속도가 빨라집니다. 진동이 많은 곳에서는 숫자를 낮춰 사용하십시오.	▶ 취소 저장 LP Filter 2.0 hz
5	<u>MA Filter (Off~20개)</u> 이동 평균 필터로 숫자가 낮아질수록 표시 속도가 빨라집니다. 진동이 많은 곳에서는 숫자를 높여 사용하십시오.	▶ 취소 저장 MA Filter 10 개
6	<u>파워 온 제로 (끔 / 켬)</u> 장비의 전원 투입 시의 측정 값을 영점으로 표시하는 기능입니다. 끔을 선택하면 교정 시의 영점 값을 기준으로 표시합니다.	▶ 취소 저장 파워 온 제로 켬
7	<u>영점 트래킹 (영점 시간: Off~9.5초 / 영점 폭: Off~9.5눈금)</u> 미세한 먼지가 쌓여 영점이 변화하거나 센서의 부하를 완전히 제거하였음에도 영점으로 복귀하지 않을 때 자동으로 영점을 잡기 위한 기능입니다. 영점 시간과 영점 폭에 적정 값을 입력하십시오. 예시와 같은 설정값이라면, 0.5초동안 1.0눈금 이내로 측정값이 변화 하는 경우 자동으로 영점으로 보상하여 표시합니다.	▶ 취소 저장 영점 시간 0.5 초 ▶ 취소 저장 영점 폭 1.0 눈금

8	<u>안정 검출 (안정 시간: Off~9.5초 / 안정 폭: Off~9.5눈금)</u> 안정으로 판단하는 검출 조건을 설정하는 기능입니다. 안정 시간과 안정 폭에 적정 값을 입력 하십시오. 예시와 같은 설정값이라면, 1.0초동안 2.0눈금 이내로 측정값이 변화 하는 경우 안정으로 판단합니다.	> 취소 저장 안정 시간 1.0 초 > 취소 저장 안정 폭 2.0 눈금
9	장비번호 (00~99) AI-35D는 자동 연결되므로 장비번호 설정은 필요하지 않습니다. AI-35D외에 다른 장비와 CAN 통신 연결 시 장비 구분 번호로 사용하십시오.	▶ 취소 저장 장비 번호 01
10	<u>통신 속도 (250 / 500 / 1000 Kbps)</u> CAN 통신 속도를 선택하십시오.	▶ 취소 저장 통신 속도 250Kbps
11	공장 초기화 (No: 현 상태 유지 / Yes: 공장 초기화 실행) 공장 초기화를 실행하면 교정 값을 제외하고 모든 설정 모드 값이 출하 당시의 값으로 초기화 됩니다. ▲ 데이터 백업을 하지 않은 경우에는 초기화 실행 후 데이터를 복원할 수 없으니 절대 주의하시기 바랍니다.	▶ 취소 저장 공장 초기화 아니오

10. 테스트 모드

번호	동작	표시 부
1	<u>테스트 모드 진입</u> 센서 연결 후 장비에 전원을 공급하면 메뉴 화면이 표시됩니다. 메뉴 화면에서 [테스트 모드]를 선택하십시오.	메뉴 (1/2) ▶ 테스트 모드 설정 모드 중량 교정
2	<u>메뉴 선택</u> 테스트 하고자 하는 메뉴를 선택하십시오.	뒤로 ▶ AD 변환 값 표시 교정 값 표시
3	<u>AD 변환 값 표시</u> 센서의 교정 되지 않은 Analog to Digital 변환 값이 표시됩니다. <좌><우>키를 눌러 페이지를 전환할 수 있습니다.	 > 뒤로 (1/2) 1 376583 2 376583 3 376583 4 376583 > 뒤로 (2/2) 5 376583 6 376583 7 376583 8 376583
4	<u>교정 값 표시</u> 교정 된 측정 값이 표시되며 맨 하단에는 합산 값이 표시됩니다. <좌> <우>키를 눌러 페이지를 전환할 수 있습니다. ❶ 무 부하 상태에서 값이 0이 아니면 <상> 또는 <하>키를 2초간 눌러 영점 보상을 할 수 있습니다.	 > 뒤로 (1/2) 1 238.25 2 245.55 3 201.40 4 223.70 T 1875.15 > 뒤로 (2/2) 5 219.35 6 267.80 7 238.10 8 241.00 T 1875.15

[NOTE]